Curriculum Proposal

Please type or select the requested information. Print completed forms, add appropriate paper attachments, and route through MSU's curricular process for recommendations and decisions.

College: Science, Engineering and Technology	Proposal #: 117
Department: Electrical and Computer Engineering	Effective Date of Change:
Program: Electrical Engineering/Computer Engineering	Academic Year: 05

| Type of Change | N/A |
| Proposed: N/A |
Title Current:	
Title Proposed:	
24-Char. Abbrev:	

Course Designator and Number

Number of Credits

(if applicable)

Rationale or Justification for Change:

Students are electing not to complete this until it is needed for graduation -- this makes advising ineffective.

For General Education or Cultural Diversity Courses Only

<table>
<thead>
<tr>
<th>GE Category #</th>
<th>GE Category Name (Maximum of 3 Categories)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

- For Writing Intensive Courses, attach a description of the kind and quantity of writing.
- For Upper Division Courses, include a description of the respects in which it is broad and general rather than narrow and specific, and so suitable as GE.

Attach paper copies of the following:

- a. Syllabus or course outline.
- b. Course’s student learning outcomes associated with each GE competency or CD designation.
- c. List of strategies to be used to assess students’ achievement of each GE competency or CD designation.

For New Courses

<table>
<thead>
<tr>
<th>Instructional Type: Lecture</th>
<th>Course will be offered:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading Format: Grade P/N</td>
<td>Fall Semester Spring Semester Summer Session</td>
</tr>
</tbody>
</table>

- Course content or title is similar to courses in other departments. (Attach copy of letter of agreement with other program(s) contacted. Indicate the nature of the discussions and/or resolution of differences or potential conflicts.)

Attach paper copies of the following:

- a. Syllabus or course outline.
- b. Course’s student learning outcomes.
- c. A list of resources required to offer and support this course.
- d. A description of how teaching this course will affect department staffing.
- e. If 400/500 level course, an explanation of added expectations of graduate students.

Revised September 2002
Minnesota State University, Mankato
Curriculum Proposal

For Program Proposals

Attach paper copies of the following:

a. Student learning outcomes for the program.
b. Minutes from department and college curriculum meetings in which action was taken on this proposal.
c. Program Assessment Plan. Forms are available on the Academic Affairs Web site:
 http://www.mnsu.edu/acadaff/words/PRA_SampSLOAssessPlan.doc
d. List of program requirements for New programs, or a list of Current and Proposed program requirements for Redesigned programs.
e. A list of resources required to offer and support this program.
f. A description of how offering this program will affect department staffing.
g. A list of additional library holdings required for this program.

Please include rationale for any proposed changes in number of program credits:

For Programs Requiring MnSCU Approval

If any of the following changes are proposed, please fill out and attach MnSCU Program Approval Forms, which are available on the Academic Affairs Web site:

 http://www.mnsu.edu/acadaff/html/currfmprocsses.htm

1. Creation of an entirely new program.
2. Redesign of existing programs, which takes any of the following forms:
 a. Addition or deletion of a program option. Options are part of program design in which 30-50% of the courses are required as part of a common core for all students, and which offers curriculum alternatives greater than 30% of the total number of credits in the major. Options are appropriate to baccalaureate or masters programs.
 b. Addition or deletion of a program emphasis. Emphases are part of program design in which more than 50% of the courses are required as part of a common core for all students, and which offers curriculum alternatives with a minimum of nine credits. Emphases are appropriate to associate and baccalaureate programs.
 c. Change in program name.
 d. Change in program CIP #.
 e. Change in TOTAL program credits.
 f. Change in degree award. For example, changing a B.A. to B.S.
 g. Creation of a new degree award in a related academic area. Examples include creation of a certificate program from an existing degree program, or a new degree program from an existing degree program (e.g., Art History BA from Art BA.)
3. Relocation of an existing program. This is a proposal to move an existing program from one site to be exclusively offered at another site, and requires closing the program offered at the original site. For example, a program offered both on-campus and through extended campus is to be offered only at the extended campus site.
4. Replication of an existing program. This is a proposal to offer an existing program at a new site, which may be an existing MnSCU-approved site, or another campus of the same institution. Replicated programs are offered at both the original site and the new location.
5. Suspension or reinstatement of a program. This proposal suspends admission of students into an existing program, and is good for three years. Reinstatement proposals request the reopening of student admissions into a given program.
6. Closure of a program. This proposal requests closure of an existing program and its official inventory of academic programs. Unless a department seeks to re-open a suspended program, it should be closed within three years of suspension.

2 Revised September 2002
Minnesota State University, Mankato

Curriculum Proposal

<table>
<thead>
<tr>
<th>Department</th>
<th>Recommendation</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
<td>(Category/ies)</td>
<td></td>
</tr>
<tr>
<td>Not Recommended</td>
<td>(Category/ies)</td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College Curriculum Committee</th>
<th>Recommendation</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
<td>(Category/ies)</td>
<td></td>
</tr>
<tr>
<td>Not Recommended</td>
<td>(Category/ies)</td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College Dean</th>
<th>Recommendation</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
<td>(Category/ies)</td>
<td></td>
</tr>
<tr>
<td>Not Recommended</td>
<td>(Category/ies)</td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Education Subcommittee</th>
<th>Recommendation</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
<td>(Category/ies)</td>
<td></td>
</tr>
<tr>
<td>Not Recommended</td>
<td>(Category/ies)</td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Undergraduate Curriculum and Academic Policy Committee</th>
<th>Recommendation</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
<td>(Category/ies)</td>
<td></td>
</tr>
<tr>
<td>Not Recommended</td>
<td>(Category/ies)</td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faculty Association Graduate Committee</th>
<th>Recommendation</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graduate Dean</th>
<th>Recommendation</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Academic Affairs Council</th>
<th>Recommendation</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
<td>(Category/ies)</td>
<td></td>
</tr>
<tr>
<td>Not Recommended</td>
<td>(Category/ies)</td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Vice President and Vice President for Academic Affairs</th>
<th>Recommendation</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved</td>
<td>(Category/ies)</td>
<td></td>
</tr>
<tr>
<td>Not Approved</td>
<td>(Category/ies)</td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revised September 2002
primary objective of the Electrical Engineering program is to educate engineering professionals who possess a sound design and analytical background coupled with a strong laboratory experience. This means that the department expects to prepare its graduates for:

1. Entry into the engineering work environment with well developed design and laboratory skills.
2. Further study toward advanced degrees in engineering and other related disciplines.
3. Advancement into managerial ranks and/or entrepreneurial endeavors.

In support of this objective, the program provides a curriculum including the following components that follow the guidelines set forth by ABET:

1. A strong background in the physical sciences, mathematics, and the engineering sciences including extensive hands-on laboratory instruction.
2. An integrated design component to the curriculum including instruction in basic practices and procedures, creativity, control, economics, and synthesis. The process begins with basic instruction during the freshman year and concludes with a capstone design project.
3. A choice of several subdisciplines in their senior level elective offerings (digital, controls, communications, microelectronics design and fabrication).
4. Opportunities for students to develop sensitivity to the social and humanistic implications of technology and motivate them to make worthwhile contributions to the profession and society, while upholding the highest standards of professional ethics.
5. Courses in business and economics to promote awareness of management and the economic aspects of engineering.
6. Preparation for continuing study at professional development.

The curriculum offers students the opportunity to emphasize a number of specialized areas including digital systems, wireless communications, controls, and material sciences. During the senior year, students must take the first step toward registration as a professional engineer by taking the Fundamentals of Engineering (FE) examination. The electrical engineering program is accredited by the Engineering Accreditation Board for Engineering and Technology (ABET). MSU offers a 3/2 program with regional Liberal Arts colleges. Contact the department for more information.

Recommended high school preparation is two years of algebra, one year of geometry, one-half year of trigonometry, one-half year of college algebra, and a year each of physics and chemistry. Without this background it may take longer than four years to earn the degree. The first two years students take science and mathematics courses common to all branches of engineering (pre-engineering), as well as supporting work in English, humanities and social sciences. Second-year electrical engineering students complete physics, mathematics and 200-level engineering science courses. Some specialization for a particular engineering major occurs in the second year.

Admission to Major. Admission to the college is necessary before enrolling in 300- and 400-level courses. Minimum college admission requirements are:
- a minimum of 32 earned semester credit hours.
- a minimum cumulative GPA of 2.00 (C).

Contact the department for application procedures.

During the sophomore year, students should submit an application form for admission to the electrical engineering program. Admission to the program is selective and, following application to the department, subject to approval of the faculty. The department makes a special effort to accommodate transfer students and has joint admissions agreements with most community colleges. Only students admitted to the program are permitted to enroll in upper-division EE courses. No transfer credits are allowed for upper-division EE courses except by faculty review following a special written permission.

Before being accepted into the program and admitted to 300-level electrical engineering courses (typically in the fall semester), a student must complete a minimum of 46 semester credits as follows:
- General Physics (calculus-based) (10 credits)
- Calculus and Differential Equations (16 credits)
- Electrical Engineering Circuit Analysis I and II (including laboratory) (7 credits)
- Chemistry (5 credits)
- English Composition (4 credits)
- Computer Sciences (FORTRAN, C, or C++) (2 credits)

- Statics and/or Dynamics (3 credits)
- A cumulative grade-point average of 2.5 for all science, math and engineering courses must be maintained. Grades must be C or better for courses to be accepted. MSU students should complete the pre-engineering courses listed under the major.

GPA Policy: Students graduating with a degree in Electrical Engineering must have completed a minimum of 20 semester credit hours of upper division EE course work; 2) have a cumulative GPA of 2.25 or higher; and 3) have completed their senior design sequence at MSU and have taken the FE exam and achieved the competency level set by the department.

P/N Grading Policy: A student who majors in EE must elect the grade option for all required courses including general education courses listed by number even if offered by another department.

ELECTRICAL ENGINEERING BSEE

Required for Major (Prerequisites, 47 credits):
CHEM 201 General Chemistry I (5)
COMS 171 Intro. to C++ Programming (2)
EE 230 Circuit Analysis I (3)
EE 231 Circuit Analysis II (3)
EE 240 Evaluation of Circuits (1)
ENG 101 Composition (4)
MATH 121 Calculus I (4)
MATH 122 Calculus II (4)
MATH 223 Calculus III (4)
MATH 321 Ordinary Differential Equations (4)
ME 212 Statics (3)
PHYS 221 General Physics I (5)
PHYS 222 General Physics II (5)

Required for Major (General Studies, 19 credits):
ENG 271 Technical Communication (4) or SPEE 233 Public Speaking for Technical Professionals (3)
* SPEE 102 Public Speaking (3) may be substituted.

Choose a minimum of 13 credits from Humanities and Social Sciences courses.

HUMANITIES (6-7 credits):
HUM 111 HUM 112 HUM 113

In general, graduation credit toward the humanities requirement is not allowed for any course in subject areas such as speech communication, writing, art, music, or theatre that involve performance practice or basic skills. Courses acceptable by department or program include: ART 100, 260, 261, 413, 416, 419, 450, 450, 462, 470, 466, 469; ENG 112, 113, 114, 271, 370, 382, 325, 327, 328, 331, 332, 400, 401, 402, 403, 405, 406, 416, 417, 478, 479, 481; FOREIGN LANGUAGE 200 level or above; HIST all except 490 and higher; HUM 150, 155, 250, 251, 250, 280, 281, 282, 282, MASS 110, 411, 412, MUS 120, 125, 126, 220, 221, 222, 422, 425, 426, 426, 426, 432, PHI 400 and higher; SPEE 203, 300, 315-400, 410, 413, THEA 100, 350, 382, 383, 481, 483. For other acceptable courses, please consult with your advisor.

*Note: EET 125 may be substituted for HUM 250

SOCIAL SCIENCES (6-7 credits):
SS 301 SS 311 SS 312 SS 313

Courses acceptable by department or program include: ANTH all courses except 480 and above; ECON 100, 101, 103, 340, 341, 420, 421, 422, 424, 435, 436, 445, 450, 454, 455; POLS all except 420, 421, 422, 460, and above; PSYC all except 201, 202, 203, 291, 303, 306, 473 and above; SOC all except 201, 202, 203, 291, 303, 471, 473, and above; WGST all except 260, 271, 290, 320, 430, 469 and above. For other acceptable coursework, please consult your advisor.

At least 3 credits of the courses selected to complete the above requirements must be 300 level or above. At least one 300-level course must follow a lower level course in the same subject area.

Choose one course from the following:
ECON 201 Principles of Macroeconomics (3)
ECON 202 Principles of Microeconomics (3)
COMS 492 (3) Computers in the Classroom
Using both a lecture and lab format, this course provides students with a foundation for developing computer-delivered instruction within the classroom by examining the hardware and software which are part of emerging technologies, and the research issues associated with the developing effective instruction using the computer.
Prereq: Senior status Variable.

COMS 493 (3) Computer-Based Instructional Systems
This course provides participants with opportunities to develop, implement, and assess formative and summative evaluation instruments; identify researchable issues in computer-delivered instruction; develop computer-delivered instruction using a sophisticated authoring tool.
Prereq: Senior status Variable.

COMS 495 (1-4) Seminar in Computer Science
Provides Computer Science majors and minors an opportunity to explore topics not normally covered in the curriculum, in a small-group setting.
Prereq: Consent F, S

COMS 496 (1-4) Selected Topics in Computer Science
Special topics not covered in other courses. May be repeated for credit on each new topic.
Prereq: Consent Variable.

COMS 497 (1-12) Internship
This course is designed to provide students with an opportunity to utilize their training in a real-world business environment. Participants work under the guidance and direction of a full-time staff member. (At most 6 hours toward a major in this department.)
Prereq: Permanent admission to the CS, CIS, or MIS major, completion of four courses from COMS 310, 320, 340, 362, 380, and consent. F, S

COMS 499 (1-2) Individual Study
Problems on an individual basis.
Prereq: Consent F, S

Computer Engineering
College of Science, Engineering & Technology
Department of Electrical and Computer Engineering and Technology
137 Trafon Science Center S • 507-389-5747
Web site: www.cset.msu.edu/ccet

Chair: Bill Hudson, Ph.D.
Program Coordinator: Julio Mandojana, Ph.D.
Tom Hendrickson, Ph.D.; Han-Woy Huang, Ph.D.; Bill Hudson, Ph.D.; Rajiv Kapadia, Ph.D.; Muhammad Khalig, Ph.D.; Paul Lindfors, Ph.D.; Julio Mandojana, Ph.D.; Ramakrishna Nair, Ph.D.

Computer Engineering (CE) encompasses the research, development, design and operation of computers and computerized systems and their components. The primary objective of the Computer Engineering program is to educate engineering professionals who possess a sound design and analytical background coupled with a strong laboratory experience. This means that the department expects to prepare its graduates for:
1. Entry into the engineering work environment with well developed design and laboratory skills.
2. Further study toward advanced degrees in engineering and other related disciplines.
3. Advancement into managerial ranks and/or entrepreneurial endeavors.

In support of this objective, the program provides a curriculum including the following components that follow the guidelines set forth by ABET:
1. A strong background in the physical sciences, mathematics, and the engineering sciences including extensive hands-on laboratory instruction.
2. An integrated design component to the curriculum including instruction in basic practices and procedures, creativity, control, economics, and synthesis. The process begins with basic instruction during the freshman year and concludes with a capstone design project.
3. A choice of several subdisciplines in their senior level elective.
4. Opportunities for students to develop sensitivity to the social and humanistic implications of technology and motivate them to make worthwhile contributions to the profession and society, while upholding the highest standards of professional ethics.
5. Courses in economics to promote awareness of the economic aspects of engineering.
6. Preparation for continuing study and professional development.

The curriculum offers students the opportunity to emphasize a number of specialized areas including advanced digital systems, communications, digital signal processing, networking, and system design.

The recommended high school preparation is two years of algebra, one year of geometry, one-half year of trigonometry, one-half year of college algebra, and a year each of physics and chemistry plus a programming language. Without this background it may take students longer than four years to earn a degree. During the first two years students take science and mathematics courses common to all branches of engineering (pre-engineering), as well as supporting work in English, humanities, and social sciences. Second-year computer engineering students complete physics, mathematics and 200-level engineering and computer science courses.

Admission to Major. Admission to the college is necessary before enrolling in computer engineering 300- and 400-level courses. Minimum college requirements are:
- a minimum of 32 earned semester credit hours.
- a minimum cumulative GPA of 2.00 (C).

Please contact the department for application procedures.

During spring semester of the sophomore year, students should submit an application form for admission to the computer engineering program. Admission to the program is selective and, following applications to the department, subject to approval from the faculty. The department makes a special effort to accommodate transfer students and has joint admissions agreements with many community colleges. Only students admitted to the program are permitted to enroll for upper-division engineering courses. No transfer credits are allowed for upper-division engineering courses except by faculty review followed by written permission.

Before being accepted into the program and admitted to 300-level engineering courses (typically in the fall semester), a student must complete a minimum of 48 semester credits as follows:
- General Physics (calculus-based) (10 credits)
- Calculus, Differential Equations, Probability & Statistics (15 credits)
- Electrical Engineering Circuit Analysis I and II (including laboratory) (7 credits)
- Chemistry (3 credits)
- English Composition (4 credits)
- Computer Sciences (Java and C++) (6 credits)

A cumulative GPA of 2.5 for all science and math courses must have been achieved for program admittance. Grades must be a "C" or better for courses to be accepted.

GPA Policy. Students graduating with a degree in Computer Engineering must have:
1. completed a minimum of 20 semester credit hours of upper division EE and COMS courses at MSU.
2. have a cumulative GPA of 2.25 on all upper division EE and COMS courses.
3. have completed their senior design sequence at MSU.
4. have taken the Fundamentals of Engineering (FE) exam and achieved the desired competency level.

P/N Grading Policy. A student who majors in CE must elect the grade option for all required courses including general education courses listed by number even if offered by another department.

100 2004-2005 Undergraduate Bulletin
Minutes of the meeting of the Department of Electrical and Computer Engineering and Technology, 13 October 2004

Present: Gale Allen, Suraj Amatya, Mark Dvorak, William Hudson, Rajiv Kapadia, Muhammad Khaliq, Pentti Lappalainen, Paul Lindfors, Julio Mandojana, Andrew Miner, RA Nair.

The meeting was called to order by Department Chairman, William Hudson

1. The minutes of the meeting of 6 October were approved with a minor technical correction.

2. Good News:
 a. May '04 EET graduate Aaron Dahlen had an article published in Circuit Cellar magazine regarding his senior design project.
 b. The IEEE Section in Rochester presented a check for $500 to the students attending the section meeting in Rochester on Monday. This funding I believe will be used to pay for the attendance of the Student Branch president and vice-president to a leadership training conference at Purdue University 16-18 October.

3. There was continuing discussion of the Spring Semester teaching schedule and scheduling in general for the future. A spreadsheet was distributed so faculty could make known their preferences for teaching or not-teaching courses. This spreadsheet will be available in the office for review at faculty input. It was noted that scheduling was very tight with the spring semester EET courses used as an example.

4. Hudson advocated publication of a policy for evaluation of transfer credit by the department not later than the first semester the student is enrolled. This was approved with any exceptions requiring approval of the department faculty.

5. Course outcomes described in Attachment #2 for the courses listed below were reviewed.

 EET-452 Outcomes were approved
 EE-332 Outcomes were approved
 EET-101 Addition of interpretation of graphs and statistics was discussed but not accepted. The outcomes were approved
 EET-355 Outcomes were approved
 EE-333 Outcomes were approved
 EET-456 Outcomes were approved
 EET-430 Outcomes were approved
 EET-431 Outcomes were approved
 EET-488 There was spirited discussion of individual vs. team projects. The outcomes describe team projects and they were approved
 EET-489 Same comments as for EET-488
 EE-254 Outcomes were approved
From: Hudson, William B
Sent: Monday, November 29, 2004 8:43 AM
To: Pomije, Marie K; Mandojana, Julio C
Subject: RE: proposals

Julio,

I don't think that the suggested change in wording would be a problem for us.

Regarding the proposed EE to ECE designator change I'm confused because when I asked Landon he said that in his checking that it would be no problem. Based on the email I received from Landon I believe we need to have this issue clarified by Dave Gjerde – I've arranged to talk to him later today.

Bill

-----Original Message-----
From: Pomije, Marie K
Sent: Tuesday, November 23, 2004 5:41 PM
To: Mandojana, Julio C
Cc: Hudson, William B; Pomije, Marie K
Subject: proposals

HI Julio

UCAP reviewed all of the cset proposals tonight. I have 2 from your dept that are tabled due to a request to change the wording. They are aq tracking #s 117 and 118 (cset tracking # 55 and 56).

Ucap members asked that the phrase "enrolled at Minnesota State University, Mankato" be rephrased to "enrolled in or declared a major housed in the department of Electrical and Computer Engineering Technology".

That way students who transfer to msu, but don't decide to major in one of your programs until they've been here for a while (like a semester or a year or whatever) can still do so. Ucap members were just concerned that as worded this policy may eliminate someone accidentally. Let me know what type of wording you want or if you want to stand by what you have. (I may ask a rep from your dept to come if you don't want to change it to explain why.)

Everything else was given tentative approval at the ucap level and should be reflected in the tracking database soon. As an aside, by coincidence, I walked back to Trafton with Dave Gjerde and mentioned the designator change proposal. You or Bill really need to speak with him. He said last year he asked MnScu about it when you contacted him and that based on what MnScu said he told you, it couldn't be done. He did say you could do it if you want to withdraw all of your courses and submit them all again as new ones using the new designator. Please check with him; this may die above us because of that. We can't

11/30/2004
over-rule a MnScu "mechanical issue" like that.

Thanks
marie

Marie K. Pomeje
Assoc. Professor of Chemistry
Dept of Chemistry and Geology
Minnesota State Univ, Mankato
office: 507-389-5917

11/30/2004