Curriculum Proposal

Please type or select the requested information. Print completed forms, add appropriate paper attachments, and route through MSU's curricular process for recommendations and decisions.

<table>
<thead>
<tr>
<th>College: Science, Engineering and Technology</th>
<th>Proposal #: 245</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department: Mechanical Engineering</td>
<td>Effective Date of Change: 05-06</td>
</tr>
<tr>
<td>Program: Civil Engineering</td>
<td>Academic Year: 05-06</td>
</tr>
<tr>
<td>Type of Change: COURSE PROPOSALS</td>
<td>(For Office Use Only)</td>
</tr>
<tr>
<td>Proposed: New Course</td>
<td>Course Designator and Number of Credits</td>
</tr>
<tr>
<td>Title Current:</td>
<td>CIVE 467/567</td>
</tr>
<tr>
<td>Title Proposed: Earth Structures</td>
<td>3 (if applicable)</td>
</tr>
<tr>
<td>24-Char. Abbrev: Earth Structures</td>
<td></td>
</tr>
</tbody>
</table>

Include a course or program description for the Bulletin (30-40 words maximum for courses, 100 for programs):

Design and construction of traditional embankments, including slope stability analysis; earth and rockfill dams, including introduction to seepage analysis; excavations, earth retaining structures, and other geotechnical structures. Geotechnical software application in analysis and design. Pre-req: CIVE 360.

Rationale or Justification for change:

This new course is developed to expand the electives in the Geotechnical Engineering area. CIVE students are required to take a minimum of 3 CIVE electives for their program.

For General Education or Cultural Diversity Courses Only

<table>
<thead>
<tr>
<th>GE Category #</th>
<th>GE Category Name (Maximum of 3 Categories)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

* For Writing Intensive Courses, attach a description of the kind and quantity of writing.
* For Upper Division Courses, include a description of the respects in which it is broad and general rather than narrow and specific, and so suitable as GE.

Attach paper copies of the following:

a. Syllabus or course outline.
b. Course's student learning outcomes associated with each GE competency or CD designation.
c. List of strategies to be used to assess students' achievement of each GE competency or CD designation.

For New Courses

<table>
<thead>
<tr>
<th>Instructional Type: Lecture</th>
<th>Course will be offered:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading Format: Grade P/N</td>
<td>Fall Semester Spring Semester Summer Session</td>
</tr>
<tr>
<td>Pre- or Co-requisites: CIVE 360</td>
<td></td>
</tr>
</tbody>
</table>

- Course content or title is similar to courses in other departments. (Attach copy of letter of agreement with other program(s) contacted. Indicate the nature of the discussions and/or resolution of differences or potential conflicts.)

Attach paper copies of the following:

a. Syllabus or course outline.
b. Course's student learning outcomes.
c. A list of resources required to offer and support this course.
d. A description of how teaching this course will affect department staffing.
e. If 400/500 level course, an explanation of added expectations of graduate students.

RECEIVED

APR - 8 2005

MINNESOTA STATE UNIVERSITY, MANKATO

Revised September 2002
Department, number, and title of course: Mechanical and Civil Engineering, CIVE 467/567, Earth Structures

Course (catalog) description: Design and construction of traditional embankments, including slope stability analysis; earth and rockfill dams, including introduction to seepage analysis; excavations, earth retaining structures, and additional geotechnical structures. Geotechnical software application in analysis and design. (3 credits)

Prerequisite: CIVE 360

Textbooks & other required material:

Course objectives: This course will build on the soil mechanics principles and the design procedures presented in the CIVE 360 course – Geotechnical Engineering. Traditional embankments (highway embankments, for example) will be discussed, with topics relating to design and construction procedures, and significant discussion of slope stability analyses which were introduced in CIVE 360. Software packages will allow the students to perform slope stability investigations of existing natural embankments, existing structural earth fill embankments, and to determine efficient options for using staged construction. Design and construction of earth and rockfill dams will be presented, as well as the impact of seepage analysis and construction issues and topics related to rehabilitation of existing structures. The students will use geotechnical engineering software to verify seepage and stability predictions for embankment dams. A brief discussion of risk assessment for earth dam structures will be presented. Design procedures for additional geotechnical structures (including excavations, retaining walls, mechanically stabilized earth walls, tieback walls, etc.) will be discussed, and construction procedures explained.

Topics covered (50-minute lecture hours):

1. Introduction (1)
2. Soil Properties (2)
3. Embankment Construction Methods (2)
4. Settlement Analysis (3)
5. Slope Stability / Software (4)
6. Staged Construction (1)
7. Earth Dam Construction Methods / Details (4)
8. Seepage Analysis / Flow Nets / Software (4)
9. Soft Foundations - Stability (2)
10. Soft Foundations - Settlement (3)
11. Geologic Considerations (2)
12. Internal Failure Modes (4)
13. Failure Mode Mitigation (1)
14. Mechanically Stabilized Earth Walls (4)
15. Other Retaining Walls (2)
16. Excavations (3)
17. Field trip / Guest Lectures (2)
18. Exams (2)
Class schedule: Three 50-minute lectures per week

Contribution of course to meeting the professional component: This elective course is used to achieve proficiency in geotechnical engineering. This is an important geotechnical engineering design course, and emphasizes the concepts of uncertainty and reliability, and the necessity for engineering judgment in making assumptions and decisions in design.

Relationship of course to program outcomes: This course meets the following ABET and program outcomes:

3a) an ability to apply knowledge of mathematics, science, and engineering
3c) an ability to design a system, component, or process to meet desired needs
3e) an ability to identify, formulate, and solve engineering problems
3f) an understanding of professional and ethical responsibility
3g) an ability to communicate effectively
3i) a recognition of the need for, and an ability to engage in life-long learning
3k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

No additional resources are required to offer and support this course.

No department staffing issues are affected in teaching this course.

For graduate students participating in the course, additional expectations would be required to complete the course. Such additional efforts would be required for more extensive design projects, more involved homework assignments relating to the theoretical aspects of the material, and in-depth research reports and projects relating to the various topics of the course. The lecture material would be identical for both graduate and undergraduate students, but the assigned reading for graduate students would be more extensive and cover a broader range of topics and applications in greater depth.