Minnesota State University, Mankato
Curriculum Proposal

Please type or select the requested information. Print completed forms, add appropriate paper attachments, and route through MSU’s curricular process for recommendations and decisions.

<table>
<thead>
<tr>
<th>College:</th>
<th>Science, Engineering and Technology</th>
<th>Undergraduate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department:</td>
<td>Chemistry and Geology</td>
<td>Graduate</td>
</tr>
<tr>
<td>Program:</td>
<td></td>
<td>CIP #</td>
</tr>
<tr>
<td>Type of Change:</td>
<td>COURSE PROPOSALS</td>
<td></td>
</tr>
<tr>
<td>Proposed:</td>
<td>Change in Course—Other</td>
<td></td>
</tr>
</tbody>
</table>

Proposal # 02

<table>
<thead>
<tr>
<th>Effective Date of Change:</th>
<th>Academic Year: 05-06</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course Designator and Number</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 320</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 320</td>
<td>5</td>
</tr>
</tbody>
</table>

(if applicable)

Include a course or program description for the Bulletin (30-40 words maximum for courses, 100 for programs):

Introduction to organic structure, bonding, chemical reactivity, reactions as acids and bases, mechanisms, and stereochemistry. The chemistry of alkanes, alkyl halides, alkenes, alkynes, alcohols, aldehydes and ketones, carboxylic acids and their derivatives, and amines will be covered. Laboratory illustrates synthetic techniques and the preparation and reactions of functional groups discussed during lecture.

Rationale or Justification:

Quantity of material too large to be effectively covered in a single semester. Selected topics will be removed and will be covered in an expanded CHEM 321.

For General Education or Cultural Diversity Courses Only

General Education Course:

<table>
<thead>
<tr>
<th>GE Category #</th>
<th>GE Category Name (Maximum of 3 Categories)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

* For Writing Intensive Courses, attach a description of the kind and quantity of writing.
* For Upper Division Courses, include a description of the respects in which it is broad and general rather than narrow and specific, and so suitable as GE.

Attach paper copies of the following:

a. Syllabus or course outline.
b. Course's student learning outcomes associated with each GE competency or CD designation.
c. List of strategies to be used to assess students' achievement of each GE competency or CD designation.

For New Courses

<table>
<thead>
<tr>
<th>(Check all that apply):</th>
<th>Instructional Type: Lecture/Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Course is elective.</td>
<td></td>
</tr>
<tr>
<td>X Course is required for program</td>
<td>Chem & Biochem Majors, Chem Minor, PreProfessional</td>
</tr>
<tr>
<td>X Pre- or Co-requisites:</td>
<td>CHEM 202</td>
</tr>
<tr>
<td>X Other courses are being changed or eliminated. (Explain.)</td>
<td>CHEM 321-Material will be moved from CHEM 320 into CHEM 321</td>
</tr>
</tbody>
</table>

* Course content or title is similar to courses in other departments. (Attach copy of letter of agreement with other program(s) contacted. Indicate the nature of the discussions and/or resolution of differences or potential conflicts.)

Attach paper copies of the following:

a. Syllabus or course outline.
b. Course's student learning outcomes.
c. A list of resources required to offer and support this course.
d. A description of how teaching this course will affect department staffing.
e. If 400/500 level course, an explanation of added expectations of graduate students.

Received Oct 31, 2002

Revised September, 2002
For Program Proposals

Attach paper copies of the following:

- a. Student learning outcomes for the program.
- b. Minutes from department and college curriculum meetings in which action was taken on this proposal.
- d. List of program requirements for New programs, or a list of Current and Proposed program requirements for Redesigned programs.
- e. A list of resources required to offer and support this program.
- f. A description of how offering this program will affect department staffing.
- g. A list of additional library holdings required for this program.

Please include rationale for any proposed changes in number of program credits.

For Programs Requiring MnSCU Approval

If any of the following changes are proposed, please fill out and attach MnSCU Program Approval Forms, which are available on the Academic Affairs Web site: http://www.mnsu.edu/acadaf/html/currformsprocesses.htm

1. Creation of an entirely new program.
2. Redesign of existing programs, which takes any of the following forms:
 - Addition or deletion of a program option. Options are part of program design in which 30-50% of the courses are required as part of a common core for all students, and which offers curriculum alternatives greater than 30% of the total number of credits in the major. Options are appropriate to baccalaureate or masters programs.
 - Addition or deletion of a program emphasis. Emphases are part of program design in which more than 50% of the courses are required as part of a common core for all students, and which offers curriculum alternatives with a minimum of nine credits. Emphases are appropriate to associate and baccalaureate programs.
 - Change in program name.
 - Change in program CIP #.
 - Change in TOTAL program credits.
 - Change in degree award. For example, changing a B.A. to B.S.
 - Creation of a new degree award in a related academic area. Examples include creation of a certificate program from an existing degree program, or a new degree program from an existing degree program (e.g., Art History BA from Art BA.)
3. Relocation of an existing program. This is a proposal to move an existing program from one site to be exclusively offered at another site, and requires closing the program offered at the original site. For example, a program offered both on-campus and through extended campus is to be offered only at the extended campus site.
4. Replication of an existing program. This is a proposal to offer an existing program at a new site, which may be an existing MnSCU-approved site, or another campus of the same institution. Replicated programs are offered at both the original site and the new location.
5. Suspension or reinstatement of a program. This proposal suspends admission of students into an existing program, and is good for three years. Reinstatement proposals request the reopening of student admissions into a given program.
6. Closure of a program. This proposal requests closure of an existing program and its from an institution's official inventory of academic programs. Unless a department seeks to re-open a suspended program, it should be closed within three years of suspension.

Revised September 2002
<table>
<thead>
<tr>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
</tr>
<tr>
<td>Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College Curriculum Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
</tr>
<tr>
<td>Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College Dean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
</tr>
<tr>
<td>Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Education Subcommittee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
</tr>
<tr>
<td>Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Undergraduate Curriculum and Academic Policy Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
</tr>
<tr>
<td>Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faculty Association Graduate Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
</tr>
<tr>
<td>Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graduate Dean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
</tr>
<tr>
<td>Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Academic Affairs Council</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
</tr>
<tr>
<td>Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Vice President and Vice President for Academic Affairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved</td>
</tr>
<tr>
<td>Not Approved</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>
Organic Chemistry 320 Curriculum Proposal

C. Resources required to offer and support this course (Chem 320).

Additional resources needed in support of this course include:
 a. a one time expense of $1600 to equip lab drawers for an additional 24 students.

D. A description of how teaching this course (Chem 320) will affect department staffing.

The changes in this course proposal will add a total of two additional contact hours of load to the faculty teaching this lecture and laboratory. This additional two hours of load, in combination with the load increases (two hours) proposed in the Chem 321 and 331 changes can be accommodated by rearranging laboratory assignments within the department and by hiring student or adjunct help to cover the combined total of four hours between all three course proposals.
Present: Clement, Groh, Hadley, Hoppie, Losh, Lusch, Pomije, Pribyl, Quirk-Dorr, Rambo, Rife, Salerno, Swart, Thoemke, Vorlcek

Meeting was called to order at 9:03 a.m.

There were no minutes to approve.

Announcements:

The Dept. of Physics plans to change its two-semester calc. based physics (221&222) to three semesters at 4 credits each. This could impact physical chemistry which would put the chem. major off course to 5 years.

Reminder about the career fair on Tues. Oct. 11

The blueprints for the Traflon addition are in C-126. All are encouraged to make comments in the log book until the end of the month. The architects are aware of the concerns about office windows.

Chem. 407 name change: Vorlcek discussed changing the name of Water Chemistry to Environmental Chemistry. There will be no change in content, but the name change would better reflect the course content.

Hadley discussed the revised advising sheets. Motion to approve the changes passed. Swart discussed putting it on the website in pdf.

Chem. 320 Groh discussed moving some content out of 1st semester, moving some of it to 2nd semester and extending 2nd semester to 3 credits. He also discussed having a 1 hour meeting time for prelab. Motion to draw up the paperwork and get it to Pomije by C-SET deadlines passed.

Chem. 495 Quirk-Dorr requested a change from P-F to grades. Motion to approve passed.

Tenure and promotion policy: there were concerns about the 8-hour turnaround for voting. Changed to a 2-day voting window. Alternate accommodations can be made if a faculty member is unavailable at the time of the voting. Motion to approve the changes passed.

Reminder to encourage students to attend the Ford Lectureship Oct. 24.

Meeting adjourned at 9:47 a.m.

Respectfully submitted
Patricia L. Rambo
From: Marg, Gregg A
Sent: Tuesday, October 18, 2005 11:43 AM
To: Groh, Brian L
Subject: RE: organic course changes

Brian,

I presented the proposed changes in the organic chemistry curriculum at our department meeting on Oct 7. There were no objections raised to the proposal. The general consensus was that the changes were very reasonable and would not have a negative impact on our students. We would like you to advertise the changes aggressively to the students, perhaps with a combination of posters in the hallways and announcements to your classes. We will make similar efforts to inform our students. While there was no formal motion of support made, I would characterize our response as one of general support for a very logical change.

Gregg

gregg.marg@mnsu.edu
507-389-5731

-----Original Message-----
From: Groh, Brian L
Sent: Tuesday, October 18, 2005 11:35 AM
To: Marg, Gregg A
Subject: organic course changes

Gregg,

Here are the changes proposed to the organic curriculum:

1. Organic I (Chem. 320) will be offered only in the fall. The spring offering of Organic I in 2006 will be the last. We will offer organic chem. I (Chem 320) at two separate times in the fall. One section of lecture at 9 am and the other at 10 am (the same time it has been offered in the past). Annually we will be able to serve at least as many Chem 320 students as we have in the past.

2. Organic I will move some content to spring semester to ensure that the material can be covered during the fall semester. This will include moving the pre-lab meeting to a single time in each 320 lecture section for all students to attend. (There will be a total of two pre-lab meetings, one for each course.) We are looking for a time that will not conflict with any courses that biology students are enrolled. These two sections will meet separately, one at 1 pm on Wednesdays and the other at 1 pm on Thursdays.

3. Organic II (Chem. 321) will add one contact hour to the lecture. It will meet M, W, F rather than M, W. This course is only required in the toxicology major.

4. Organic II lab (Chem 331) will also have a separate pre-lab meeting time once a week at a time that will minimize conflicts with any biology courses. A time has not yet been set.

5. Chem 423 will move to spring semester from fall semester. I do not believe this last change impacts any of the biology programs.

These are the course changes we are proposing. Please let me know if these meet with your department's approval. Thank you for your help.

Brian Groh

**
Dr. Brian Groh, Chairperson
Department of Chemistry and Geology
Minnesota State University, Mankato

10/18/2005
Chemistry 320 – Organic Chemistry I
Course Proposal

Attached are:

1. A copy of the table of contents of the text, indicating the material to be covered, since existing syllabi are not detailed enough to reflect the changing content of the course.

2. A copy of the existing syllabus.

3. Course student learning outcomes.

4. List of resources required and impact on departmental staffing.

5. Department of Chemistry and Geology Meeting Minutes noting the proposed course changes.

6. Department of Biology email from Greg Marg supporting the proposed changes.
Contents

Preface xxiii
About the Author xli

1 Introduction and Review 1

1-1 The Origins of Organic Chemistry 1
1-2 Principles of Atomic Structure 3
1-3 Bond Formation: The Octet Rule 6
1-4 Lewis Structures 7
1-5 Multiple Bonding 8
 Summary: Common Bonding Patterns (Uncharged) 9
1-6 Electronegativity and Bond Polarity 9
1-7 Formal Charges 11
1-8 Ionic Structures 12
 Summary: Common Bonding Patterns in Organic Compounds and Ions 13
1-9 Resonance 13
1-10 Structural Formulas 17
1-11 Molecular Formulas and Empirical Formulas 20
1-12 Arrhenius Acids and Bases 21
1-13 Brønsted–Lowry Acids and Bases 22
1-14 Lewis Acids and Bases 29
 Chapter 1 Glossary 32
 Study Problems 34

2 Structure and Properties of Organic Molecules 39

2-1 Wave Properties of Electrons in Orbitals 39
2-2 Molecular Orbitals 41
2-3 Pi Bonding 44
2-4 Hybridization and Molecular Shapes 45
2-5 Drawing Three-Dimensional Molecules 49
2-6 General Rules of Hybridization and Geometry 50
2-7 Bond Rotation 54
2-8 Isomerism 56
2-9 Polarity of Bonds and Molecules 58
2-10 Intermolecular Forces 61
2-11 Polarity Effects on Solubilities 65
2-12 Hydrocarbons 68
2-13 Organic Compounds Containing Oxygen 71
2-14 Organic Compounds Containing Nitrogen 73
 Chapter 2 Glossary 75
 Study Problems 77
3 Structure and Stereochemistry of Alkanes 81

3-1 Classification of Hydrocarbons (Review) 81
3-2 Molecular Formulas of Alkanes 82
3-3 Nomenclature of Alkanes 83
Summary: Rules for Naming Alkanes 88
3-4 Physical Properties of Alkanes 89
3-5 Uses and Sources of Alkanes 94
3-6 Reactions of Alkanes 93
3-7 Structure and Conformations of Alkanes 94
3-8 Conformations of Butane 98
3-9 Conformations of Higher Alkanes 100
3-10 Cycloalkanes 100
3-11 cis-trans Isomerism in Cycloalkanes 103
3-12 Stabilities of Cycloalkanes; Ring Strain 103
3-13 Cyclohexane Conformations 107
Problem-Solving Strategy: Drawing Chair Conformations 110
3-14 Conformations of Monosubstituted Cyclohexanes 111
3-15 Conformations of Disubstituted Cyclohexanes 114
Problem-Solving Strategy: Recognizing cis and trans Isomers 116
3-16 Bicycle Molecules 117
Chapter 3 Glossary 119
Study Problems 122

4 The Study of Chemical Reactions 125

4-1 Introduction 125
4-2 Chlorination of Methane 125
4-3 The Free-Radical Chain Reaction 126
Key Mechanism: Free-Radical Halogenation 128
4-4 Equilibrium Constants and Free Energy 130
4-5 Enthalpy and Entropy 133
4-6 Bond-Dissociation Enthalpies 134
4-7 Enthalpy Changes in Chlorination 135
4-8 Kinetics and the Rate Equation 137
4-9 Activation Energy and the Temperature Dependence of Rates 139
4-10 Transition States 140
4-11 Rates of Multistep Reactions 142
4-12 Temperature Dependence of Halogenation 143
4-13 Selectivity in Halogenation 144
4-14 The Hammond Postulate 149
Problem-Solving Strategy: Proposing Reaction Mechanisms 151
4-15 Radical Inhibitors 153
4-16 Reactive Intermediates 155
Summary: Reactive Intermediates 160
Chapter 4 Glossary 160
Study Problems 163
5 Stereochemistry 167

5-1 Introduction 157
5-2 Chirality 168
5-3 (R) and (S) Nomenclature of Asymmetric Carbon Atoms 174
5-4 Optical Activity 179
5-5 Biological Discrimination of Enantiomers 184
5-6 Racemic Mixtures 185
5-7 Enantiomeric Excess and Optical Purity 186
5-8 Chirality of Conformationally Mobile Systems 187
5-9 Chiral Compounds without Asymmetric Atoms 189
5-10 Fischer Projections 191
 Summary: Fischer Projections and Their Use 196
5-11 Diastereomers 196
 Summary: Types of Isomers 197
5-12 Stereochemistry of Molecules with Two or More Asymmetric Carbons 198
5-13 Meso Compounds 199
5-14 Absolute and Relative Configuration 201
5-15 Physical Properties of Diastereomers 203
5-16 Resolution of Enantiomers 204
 Chapter 5 Glossary 207
 Study Problems 209

6 Alkyl Halides: Nucleophilic Substitution and Elimination 212

6-1 Introduction 212
6-2 Nomenclature of Alkyl Halides 213
6-3 Common Uses of Alkyl Halides 215
6-4 Structure of Alkyl Halides 217
6-5 Physical Properties of Alkyl Halides 218
6-6 Preparation of Alkyl Halides 220
 Summary: Methods for Preparing Alkyl Halides 223
6-7 Reactions of Alkyl Halides: Substitution and Elimination 225
6-8 Second-Order Nucleophilic Substitution: The S_N2 Reaction 226
 Key Mechanism: The S_N2 Reaction 227
6-9 Generality of the S_N2 Reaction 228
 Summary: S_N2 Reactions of Alkyl Halides 228
6-10 Factors Affecting S_N2 Reactions: Strength of the Nucleophile 230
 Summary: Trends in Nucleophilicity 231
6-11 Reactivity of the Substrate in S_N2 Reactions 234
6-12 Stereochemistry of the S_N2 Reaction 238
6-13 First-Order Nucleophilic Substitution: The S_N1 Reaction 240
 Key Mechanism: The S_N1 Reaction 241
6-14 Stereochemistry of the S_N1 Reaction 244
6-15 Rearrangements in S_N1 Reactions 246
6-16 Comparison of S_N1 and S_N2 Reactions 249
 Summary: Nucleophilic Substitutions 251
6-17 First-Order Elimination: The E1 Reaction 252
 Key Mechanism: The E1 Reaction 252
 Summary: Carbocation Reactions 256
6-18 Positional Orientation of Elimination: Zaitsev’s Rule 257
7 Structure and Synthesis of Alkenes 279

7-1 Introduction 279
7-2 The Orbital Description of the Alkene Double Bond 280
7-3 Elements of Unsaturation 281
7-4 Nomenclature of Alkenes 283
7-5 Nomenclature of cis-Trans Isomers 285
Summary: Rules for Naming Alkenes 287
7-6 Commercial Importance of Alkenes 288
7-7 Stability of Alkenes 290
7-8 Physical Properties of Alkenes 296
7-9 Alkene Synthesis by Elimination of Alkyl Halides 298
7-10 Alkene Synthesis by Dehydration of Alcohols 306
Key Mechanism: Acid-Catalyzed Dehydration of an Alcohol 307
7-11 Alkene Synthesis by High-Temperature Industrial Methods 309
Problem-Solving Strategy: Proposing Reaction Mechanisms 310
Summary: Methods for Synthesis of Alkenes 314
Chapter 7 Glossary 316
Study Problems 318

8 Reactions of Alkenes 321

8-1 Reactivity of the Carbon–Carbon Double Bond 321
8-2 Electrophilic Addition to Alkenes 322
Key Mechanism: Electrophilic Addition to Alkenes 322
8-3 Addition of Hydrogen Halides to Alkenes 324
8-4 Addition of Water: Hydration of Alkenes 330
8-5 Hydration by Oxymercuration–Demercuration 333
8-6 Alkoxymercuration–Demercuration 335
8-7 Hydroboration of Alkenes 336
8-8 Addition of Halogens to Alkenes 342
8-9 Formation of Halohydrins 345
8-10 Catalytic Hydrogenation of Alkenes 348
8-11 Addition of Carbenes to Alkenes 350
8-12 Epoxidation of Alkenes 353
8-13 Acid-Catalyzed Opening of Epoxides 355
8-14 Syn Hydroxylation of Alkenes 358
8-15 Oxidative Cleavage of Alkenes 360
8-16 Polymerization of Alkenes 363
Problem-Solving Strategy: Organic Synthesis 367
9 Alkynes 382

9-1 Introduction 382
9-2 Nomenclature of Alkynes 383
9-3 Physical Properties of Alkynes 384
9-4 Commercial Importance of Alkynes 384
9-5 Electronic Structure of Alkynes 386
9-6 Acidity of Alkynes; Formation of Acetylide Ions 387
9-7 Synthesis of Alkynes from Acetylides 389
9-8 Synthesis of Alkynes by Elimination Reactions 393
 Summary: Syntheses of Alkynes 396
9-9 Addition Reactions of Alkynes 396
9-10 Oxidation of Alkynes 406
 Problem-Solving Strategy: Multistep Synthesis 408
 Summary: Reactions of Alkynes 409
Chapter 9 Glossary 412
Study Problems 413

10 Structure and Synthesis of Alcohols 417

10-1 Introduction 417
10-2 Structure and Classification of Alcohols 417
10-3 Nomenclature of Alcohols and Phenols 419
10-4 Physical Properties of Alcohols 423
10-5 Commercially Important Alcohols 425
10-6 Acidity of Alcohols and Phenols 427
10-7 Synthesis of Alcohols: Introduction and Review 430
 Summary: Previous Alcohol Syntheses 430
10-8 Organometallic Reagents for Alcohol Synthesis 432
10-9 Addition of Organometallic Reagents to Carbonyl Compounds 435
 Key Mechanism: Grignard Reactions 435
 Summary: Grignard Reactions 442
10-10 Side Reactions of Organometallic Reagents: Reduction of Alkyl Halides 443
10-11 Reduction of the Carbonyl Group: Synthesis of 1° and 2° Alcohols 445
 Summary: Reactions of LiAlH₄ and NaBH₄ 448
 Summary: Alcohol Syntheses 449

* 10-12 Thiols (Mercaptans) 451
Chapter 10 Glossary 454
Study Problems 455

11 Reactions of Alcohols 460

11-1 Oxidation States of Alcohols and Related Functional Groups 460
11-2 Oxidation of Alcohols 462
11-3 Additional Methods for Oxidizing Alcohols 465
11-4 Biological Oxidation of Alcohols 467
11-5 Alcohols as Nucleophiles and Electrophiles; Formation of Tosylates 469
 Summary: S_N2 Reactions of Tosylate Esters 471
11-6 Reduction of Alcohols 472
11-7 Reactions of Alcohols with Hydrohalic Acids 472
11-8 Reactions of Alcohols with Phosphorus Halides 477
11-9 Reactions of Alcohols with Thionyl Chloride 478
11-10 Dehydration Reactions of Alcohols 480
 Problem-Solving Strategy: Proposing Reaction Mechanisms 484
11-11 Unique Reactions of Diols 488
11-12 Esterification of Alcohols 490
11-13 Esters of Inorganic Acids 491
11-14 Reactions of Alkoxides 494
 Key Mechanism: The Williamson Ether Synthesis 494
 Problem-Solving Strategy: Multistep Synthesis 496
 Summary: Reactions of Alcohols 499
 Chapter 11 Glossary 502
 Study Problems 503

12 Infrared Spectroscopy and Mass Spectrometry 508
12-1 Introduction 508
12-2 The Electromagnetic Spectrum 509
12-3 The Infrared Region 510
12-4 Molecular Vibrations 511
12-5 IR-Active and IR-Inactive Vibrations 513
12-6 Measurement of the IR Spectrum 514
12-7 Infrared Spectroscopy of Hydrocarbons 517
12-8 Characteristic Absorptions of Alcohols and Amines 522
12-9 Characteristic Absorptions of Carbonyl Compounds 523
12-10 Characteristic Absorptions of C—N Bonds 529
12-11 Simplified Summary of IR Stretching Frequencies 530
12-12 Reading and Interpreting IR Spectra (Solved Problems) 532
12-13 Introduction to Mass Spectrometry 537
12-14 Determination of the Molecular Formula by Mass Spectrometry 541
12-15 Fragmentation Patterns in Mass Spectrometry 544
 Summary: Common Fragmentation Patterns 549
 Chapter 12 Glossary 551
 Study Problems 552

13 Nuclear Magnetic Resonance Spectroscopy 559
13-1 Introduction 559
13-2 Theory of Nuclear Magnetic Resonance 559
13-3 Magnetic Shielding by Electrons 562
13-4 The NMR Spectrometer 564
13-5 The Chemical Shift 565
13-6 The Number of Signals 572
13-7 Areas of the Peaks 573
13-8 Spin-Spin Splitting 576
 Problem-Solving Strategy: Drawing an NMR Spectrum 581
14 Ethers, Epoxides, and Sulfides 623

14-1 Introduction 623
14-2 Physical Properties of Ethers 623
14-3 Nomenclature of Ethers 628
14-4 Spectroscopy of Ethers 631
14-5 The Williamson Ether Synthesis 633
14-6 Synthesis of Ethers by Alkoxymercuration–Demercuration 634
14-7 Industrial Synthesis: Bimolecular Dehydration of Alcohols 635
 Summary: Syntheses of Ethers 636
14-8 Cleavage of Ethers by HBr and HI 636
14-9 Autoxidation of Ethers 639
 Summary: Reactions of Ethers 639
14-10 Sulfides (Thioethers) 640
14-11 Synthesis of Epoxides 642
 Summary: Epoxide Syntheses 645
14-12 Acid-Catalyzed Ring Opening of Epoxides 645
14-13 Base-Catalyzed Ring Opening of Epoxides 649
14-14 Orientation of Epoxide Ring Opening 650
14-15 Reactions of Epoxides with Grignard and Organolithium Reagents 652
14-16 Epoxy Resins: The Advent of Modern Glues 653
 Summary: Reactions of Epoxides 655
Chapter 14 Glossary 656
Study Problems 658

15 Conjugated Systems, Orbital Symmetry, and Ultraviolet Spectroscopy 663

15-1 Introduction 665
15-2 Stabilities of Dienes 663
15-3 Molecular Orbital Picture of a Conjugated System 665
15-4 Allylic Cations 669
15-5 1,2- and 1,4-Addition to Conjugated Dienes 670
15-6 Kinetic versus Thermodynamic Control in the Addition of HBr to 1,3-Butadiene 672
15-7 Allylic Radicals 674
15-8 Molecular Orbitals of the Allylic System 676
15-9 Electronic Configurations of the Allyl Radical, Cation, and Anion 678
15-10 Sn2 Displacement Reactions of Allylic Halides and Tosylates 679
Aromatic Compounds 705

16-1 Introduction: The Discovery of Benzene 705
16-2 The Structure and Properties of Benzene 705
16-3 The Molecular Orbitals of Benzene 709
16-4 The Molecular Orbital Picture of Cyclobutadiene 712
16-5 Aromatics, Antiaromatic, and Nonaromatic Compounds 714
16-6 Hückel’s Rule 714
16-7 Molecular Orbital Derivation of Hückel’s Rule 716
16-8 Aromatic Ions 717
16-9 Heterocyclic Aromatic Compounds 723
16-10 Polynuclear Aromatic Hydrocarbons 727
16-11 Aromatic Allotropes of Carbon 729
16-12 Fused Heterocyclic Compounds 731
16-13 Nomenclature of Benzene Derivatives 732
16-14 Physical Properties of Benzene and Its Derivatives 734
16-15 Spectroscopy of Aromatic Compounds 735
 Chapter 16 Glossary 738
 Study Problems 740

Reactions of Aromatic Compounds 749

17-1 Electrophilic Aromatic Substitution 749
 Key Mechanism: Electrophilic Aromatic Substitution 750
17-2 Halogenation of Benzene 751
17-3 Nitrination of Benzene 753
17-4 Sulphonation of Benzene 755
17-5 Nitration of Toluene: The Effect of Alkyl Substitution 757
17-6 Activating, Ortho, Para-Directing Substituents 759
 Summary: Activating, Ortho, Para-Directors 762
17-7 Deactivating, Meta-Directing Substituents 763
 Summary: Deactivating, Meta-Directors 766
17-8 Halogen Substituents: Deactivating, but Ortho, Para-Directing 766
 Summary: Directing Effects of Substituents 768
17-9 Effects of Multiple Substituents on Electrophilic Aromatic Substitution 768
17-10 The Friedel–Crafts Alkylation 771
17-11 The Friedel–Crafts Acylation 775
 Summary: Comparison of Friedel–Crafts Alkylation and Acylation 778
17-12 Nucleophilic Aromatic Substitution 780
17-13 Addition Reactions of Benzene Derivatives 785
17-14 Side-Chain Reactions of Benzene Derivatives 787
17-15 Reactions of Phenols 791
18 Ketones and Aldehydes 805

18-1 Carbonyl Compounds 805
18-2 Structure of the Carbonyl Group 806
18-3 Nomenclature of Ketones and Aldehydes 806
18-4 Physical Properties of Ketones and Aldehydes 809
18-5 Spectroscopy of Ketones and Aldehydes 811
18-6 Industrial Importance of Ketones and Aldehydes 818
18-7 Review of Syntheses of Ketones and Aldehydes 818
18-8 Synthesis of Ketones and Aldehydes Using 1,3-Dithianes 822
18-9 Synthesis of Ketones from Carboxylic Acids 823
18-10 Synthesis of Ketones from Nitriles 824
18-11 Synthesis of Aldehydes and Ketones from Acid Chlorides 825

Summary: Syntheses of Ketones and Aldehydes 826

18-12 Reactions of Ketones and Aldehydes: Nucleophilic Addition 829

Key Mechanism: Nucleophilic Additions to Carbonyl Groups 831

18-13 The Wittig Reaction 832
18-14 Hydration of Ketones and Aldehydes 836
18-15 Formation of Cyanoheptins 838

Key Mechanism: Formation of Imines 840

18-16 Formation of Imines 840
18-17 Condensations with Hydroxylamine and Hydrazines 843

Summary: Condensations of Amines with Ketones and Aldehydes 844

18-18 Formation of Acetals 845

Key Mechanism: Formation of Acetals 846

18-19 Oxidation of Aldehydes 852
18-20 Reductions of Ketones and Aldehydes 853

Summary: Reactions of Ketones and Aldehydes 855
Glossary 858
Study Problems 861

19 Amines 870

19-1 Introduction 870
19-2 Nomenclature of Amines 871
19-3 Structure of Amines 873
19-4 Physical Properties of Amines 875
19-5 Basicity of Amines 877
19-6 Effects on Amine Basicity 878
19-7 Salts of Amines 880
19-8 Amines as Phase Transfer Catalysts 882
19-9 Spectroscopy of Amines 884
19-10 Reactions of Amines with Ketones and Aldehydes (Review) 888
19-11 Aromatic Substitution of Aromamines and Pyridine (Review) 888
19-12 Alkylation of Amines by Alkyl Halides 892
20 Carboxylic Acids 935

20-1 Introduction 935
20-2 Nomenclature of Carboxylic Acids 935
20-3 Structure and Physical Properties of Carboxylic Acids 939
20-4 Acidity of Carboxylic Acids 940
20-5 Salts of Carboxylic Acids 944
20-6 Commercial Sources of Carboxylic Acids 947
20-7 Spectroscopy of Carboxylic Acids 948
20-8 Synthesis of Carboxylic Acids 952
Summary: Syntheses of Carboxylic Acids 955
20-9 Reactions of Carboxylic Acids and Derivatives;
Nucleophilic Acyl Substitution 957
20-10 Condensation of Acids with Alcohols: The Fischer Esterification 958
Key Mechanism: Fischer Esterification 959
20-11 Esterification Using Diazomethane 962
20-12 Condensation of Acids with Amines: Direct Synthesis of Amides 963
20-13 Reduction of Carboxylic Acids 963
20-14 Alkylation of Carboxylic Acids to Form Ketones 965
20-15 Synthesis and Use of Acid Chlorides 966
Summary: Reactions of Carboxylic Acids 968
Chapter 20 Glossary 970
Study Problems 971

21 Carboxylic Acid Derivatives 978

21-1 Introduction 978
21-2 Structure and Nomenclature of Acid Derivatives 979
21-3 Physical Properties of Carboxylic Acid Derivatives 985
21-4 Spectroscopy of Carboxylic Acid Derivatives 988
21-5 Interconversion of Acid Derivatives by Nucleophilic Acyl Substitution 994
Key Mechanism: Addition-Elimination Mechanism of Nucleophilic Acyl Substitution 995
21-6 Transesterification 1003
Problem-Solving Strategy: Proposing Reaction Mechanisms 1004
21-7 Hydrolysis of Carboxylic Acid Derivatives 1006
21-8 Reduction of Acid Derivatives 1011
22 Condensations and Alpha Substitutions of Carboxyl Compounds 1041

22-1 Introduction 1041
22-2 Enols and Enolate Ions 1042
22-3 Alpha Halogenation of Ketones 1046
22-4 α-Bromination of Acids: The HZV Reaction 1051
22-5 Alkylation of Enolate Ions 1052
22-6 Formation and Alkylation of Enamines 1053
22-7 The Aldol Condensation of Ketones and Aldehydes 1056
 Key Mechanism: Base-Catalyzed Aldol Condensation 1056
22-8 Dehydration of Aldol Products 1060
 Key Mechanism: Base-Catalyzed Dehydration of an Aldol 1060
22-9 Crossed Aldol Condensations 1061
 Problem-Solving Strategy: Proposing Reaction Mechanisms 1062
22-10 Aldol Cyclizations 1064
22-11 Planning Syntheses Using Aldol Condensations 1065
22-12 The Claisen Ester Condensation 1067
 Key Mechanism: The Claisen Ester Condensation 1067
22-13 The Dieckmann Condensation: A Claisen Cyclization 1070
22-14 Crossed Claisen Condensations 1074
22-15 Syntheses Using β-Dicarboxyl Compounds 1074
22-16 The Malonic Ester Synthesis 1076
22-17 The Acetoacetic Ester Synthesis 1079
22-18 Conjugate Additions: The Michael Reaction 1081
22-19 The Robinson Annulation 1085
 Problem-Solving Strategy: Proposing Reaction Mechanisms 1086
 Summary: Enolate Additions and Condensations 1088
 Chapter 22 Glossary 1090
 Study Problems 1092

23 Carbohydrates and Nucleic Acids 1097

23-1 Introduction 1097
23-2 Classification of Carbohydrates 1098
23-3 Monosaccharides 1099
23-4 Erythro and Theo Diastereomers 1102
23-5 Epimers 1103
23-6 Cyclic Structures of Monosaccharides 1104
24 Amino Acids, Peptides, and Proteins 1153

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-1</td>
<td>Introduction</td>
<td>1153</td>
</tr>
<tr>
<td>24-2</td>
<td>Structure and Stereochemistry of the α-Amino Acids</td>
<td>1154</td>
</tr>
<tr>
<td>24-3</td>
<td>Acid–Base Properties of Amino Acids</td>
<td>1158</td>
</tr>
<tr>
<td>24-4</td>
<td>Isoelectric Points and Electrophoresis</td>
<td>1160</td>
</tr>
<tr>
<td>24-5</td>
<td>Synthesis of Amino Acids</td>
<td>1161</td>
</tr>
<tr>
<td></td>
<td>Summary: Syntheses of Amino Acids</td>
<td>1166</td>
</tr>
<tr>
<td>24-6</td>
<td>Resolution of Amino Acids</td>
<td>1167</td>
</tr>
<tr>
<td>24-7</td>
<td>Reactions of Amino Acids</td>
<td>1167</td>
</tr>
<tr>
<td></td>
<td>Summary: Reactions of Amino Acids</td>
<td>1170</td>
</tr>
<tr>
<td>24-8</td>
<td>Structure and Nomenclature of Peptides and Proteins</td>
<td>1170</td>
</tr>
<tr>
<td>24-9</td>
<td>Peptide Structure Determination</td>
<td>1174</td>
</tr>
<tr>
<td>24-10</td>
<td>Solution-Phase Peptide Synthesis</td>
<td>1180</td>
</tr>
<tr>
<td>24-11</td>
<td>Solid-Phase Peptide Synthesis</td>
<td>1183</td>
</tr>
<tr>
<td>24-12</td>
<td>Classification of Proteins</td>
<td>1188</td>
</tr>
<tr>
<td>24-13</td>
<td>Levels of Protein Structure</td>
<td>1189</td>
</tr>
<tr>
<td>24-14</td>
<td>Protein Denaturation</td>
<td>1191</td>
</tr>
<tr>
<td></td>
<td>Chapter 24 Glossary</td>
<td>1193</td>
</tr>
<tr>
<td></td>
<td>Study Problems</td>
<td>1196</td>
</tr>
</tbody>
</table>

25 Lipids 1200

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-1</td>
<td>Introduction</td>
<td>1200</td>
</tr>
<tr>
<td>25-2</td>
<td>Waxes</td>
<td>1200</td>
</tr>
<tr>
<td>25-3</td>
<td>Triglycerides</td>
<td>1201</td>
</tr>
<tr>
<td>25-4</td>
<td>Saponification of Fats and Oils; Soaps and Detergents</td>
<td>1204</td>
</tr>
</tbody>
</table>
26 Synthetic Polymers 1222

26-1 Introduction 1222
26-2 Addition Polymers 1223
26-3 Stereochemistry of Polymers 1229
26-4 Stereoechemical Control of Polymerization; Ziegler–Natta Catalysts 1230
26-5 Natural and Synthetic Rubbers 1230
26-6 Copolymers of Two or More Monomers 1232
26-7 Condensation Polymers 1232
26-8 Polymer Structure and Properties 1236
 Chapter 26 Glossary 1238
 Study Problems 1240

Appendices 1243

1A NMR Absorption Positions of Protons in Various Structural Environments 1244
1B Spin-Spin Coupling Constants 1246
1C 13C Chemical Shifts in Organic Compounds 1247
2A Characteristic Infrared Group Frequencies 1248
2B IR: Characteristic Infrared Absorptions of Functional Groups 1251
3 UV: The Woodward–Fieser Rules for Predicting UV-Visible Spectra 1253
4A Methods and Suggestions for Proposing Mechanisms 1257
4B Suggestions for Developing Multistep Syntheses 1260
5 pK_a Values for Representative Compounds 1261

Mechanism Boxes

CHAPTER 6 Allylic Bromination 222
Inversion of Configuration in the S_N2 Reaction 238
Racemization in the S_N1 Reaction 245
Hydride Shift in an S_N1 Reaction 247
Methyl Shift in an S_N1 Reaction 248
Rearrangement in an E1 Reaction 255

CHAPTER 7 Dehydrohalogenation by the E2 Mechanism 298
Stereochemistry of the E2 Reaction 300
E2 Dehydration of a Vicinal Dibromide 304

CHAPTER 8 Ionic Addition of HX to an Alkene 325
Free-Radical Addition of HBr to Alkenes 327
CHEM 320 – Organic Chemistry I
Student Learning Outcomes

1. Acquire a knowledge of the preparation, properties, and reactions of different kinds of organic compounds as covered in lecture and laboratory.

2. Acquire a mechanistic understanding of organic reactions.

3. Acquire a fundamental knowledge of the organic functional groups needed to comprehend biochemistry.

4. Master basic organic laboratory skills such as recrystallization, determination of melting point, distillation, liquid–liquid extraction, and drying of organic liquids.
Chemistry 320 - Organic Chemistry I
Fall Semester, 2005
Course Policies & Syllabus

Instructor: Dr. Michael J. Lusch
Office: Trafton N354 (across from TR N362)
Phone: 389-2906 (or Chem. Dept., 389-1963)
E-Mail: michael.lusch@mnsu.edu

Lecture: MTWF 10:00-10:50 AM, Trafton C124.

Laboratory Sections: All Labs in Trafton N362.
Section 01 Thursday (R), 8:00-10:50 AM
Section 02 Tuesday (T), 2:00-4:50 PM
Section 03 Wednesday (W), 2:00-4:50 PM
Section 04 Thursday (R), 2:00-4:50 PM
Section 05 Monday (M), 2:00-4:50 PM

Instructor:
Mr. Rob Johnson
Prof. Michael J. Lusch, TR N354
Dr. Eric Woller
Prof. Michael J. Lusch, TR N354
Prof. Michael J. Lusch, TR N354

Office Hours: MTWRF 11:00-11:50 AM; MTWR 5:00-5:50 PM,
OR by appointment (or by drop-in).
Optional Tutorial/Help Sessions (1 hr each week): To be announced.

Lecture Text and Course Materials:
3. A set of molecular models is highly recommended. It is often difficult to visualize a molecular structure in three dimensions when it is drawn in two dimensions. Molecular models will almost certainly help.
4. See Laboratory Syllabus for additional Course Materials for the Lab.

Prerequisites:
Successful completion of a full year of General Chemistry (two semesters, Chem 201 and 202 or equivalent; or the three quarter equivalent sequence).

Course Objectives:
The acquisition of an understanding of carbon-containing compounds, their structure, bonding, naming, three-dimensional shape, the major functional groups they contain, and the chemical changes they undergo. This knowledge will include some of the basic methods of preparation of major functional groups, and the major transformations these compounds may experience. These reactions will be characterized by the reagents and conditions that cause them to occur, and by the step-by-step processes of bond-making and bond-breaking that describe the pathways by which the reactions take place (their mechanisms). A knowledge of Organic Chemistry is critical to the comprehension of the organic chemistry of biological systems in fields such as Biochemistry, Microbiology, Genetics, Cell Biology, Molecular Biology, Physiology, and Medicine, as well as the roles that organic substances play in other areas of our daily existence.

Grading: In order for you to pass this course, you must complete all course requirements. Final grades will be determined as follows:

<table>
<thead>
<tr>
<th>Components of Your Grade</th>
<th>Point Values</th>
<th>Grading Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Class Exams (4; 100 pts each)</td>
<td>400 pts (53.7 %)</td>
<td>90–100 % A</td>
</tr>
<tr>
<td>Quizzes (10; 10 pts each)</td>
<td>100 pts (13.4 %)</td>
<td>80–89 % B</td>
</tr>
<tr>
<td>Laboratory Questions (12, 10 pts each)</td>
<td>120 pts (16.1 %)</td>
<td>70–79 % C</td>
</tr>
<tr>
<td>Laboratory Safety & Technique</td>
<td>25 pts (3.4 %)</td>
<td>60–69 % D</td>
</tr>
<tr>
<td>Final–Pt 1, Mandatory (New Material)</td>
<td>100 pts (13.4 %)</td>
<td>Less Than 60 % F</td>
</tr>
<tr>
<td>Final–Pt 2, Optional (Comprehensive)</td>
<td>(100 pts)</td>
<td>(review; substitute for lowest In-Class Exam)</td>
</tr>
<tr>
<td>Total</td>
<td>745 pts</td>
<td></td>
</tr>
</tbody>
</table>

1
Hourly Exams. Four 50-minute in-class exams (100 pts each) will be given during the semester. Exams will be based on the lectures, readings, and assigned problems, and will be designed so that the instructor can physically write out all of the correct answers in 20 min. or less. Hourly Exams will be returned to students to be used for subsequent study.

Final Exam. A two-hour final exam will be given during the final exam period. The final exam will consist of two parts:

Part 1 – a mandatory exam (100 pts) covering material covered since the last in-class exam (new material). This part of the final exam must be taken by all students, and cannot be replaced by the optional part of the final exam.

Part 2 - an optional exam (100 pts) which will be a comprehensive review of the material covered on the four in-class exams (review material). The grade on this optional part may be substituted for the lowest of the in-class exam grades (if higher; if not higher than any of the in-class exam grades, it will simply be ignored). If a student does well enough on all four of the hourly exams to get the grade with which they are satisfied, they do not have to take the optional part of the final exam. Whether or not to take the optional part of the final exam must be the decision of each individual student.

Both parts of the final exam will be handed out at the beginning of the final exam period, and the amount of time devoted to each part is to be determined by each student, keeping in mind that the grade on the mandatory part cannot be replaced, and will be counted in all cases.

Missed exams. It is each student's personal responsibility to be present for all exams. In cases of serious illness or a legitimate emergency, it is the student's responsibility to consult with the instructor as soon as possible about the possibility of scheduling a make-up exam. The student must notify the instructor on the exam day (or before), and any make-up exams must be taken before the graded exams are returned to the class. If a make-up exam is not taken, the optional Part 2 of the final exam must be taken, and that grade will replace the missed exam grade. (This therefore requires that each of the other exam grades must count toward your grade as well; if a make-up exam is not taken for a missed exam, there will be no opportunity to make up for any other poor exam.)

In the event of a cancellation of class on an exam or quiz date (primarily as a result of inclement weather or other emergency), the exam will be given during the next class meeting.

<table>
<thead>
<tr>
<th>Quiz and Exam Schedule (Highly Approximate and Tentative):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2005</td>
</tr>
<tr>
<td>Quiz 1</td>
</tr>
<tr>
<td>Quiz 2</td>
</tr>
<tr>
<td>Quiz 3</td>
</tr>
<tr>
<td>Quiz 4</td>
</tr>
<tr>
<td>Quiz 5</td>
</tr>
<tr>
<td>Quiz 6</td>
</tr>
<tr>
<td>Quiz 7</td>
</tr>
<tr>
<td>Quiz 8</td>
</tr>
<tr>
<td>Nov 24–25</td>
</tr>
<tr>
<td>Quiz 9</td>
</tr>
<tr>
<td>Quiz 10</td>
</tr>
</tbody>
</table>

The instructor reserves the right to modify the exam and quiz schedule and adjust the grading guidelines accordingly.
Quizzes. Quizzes worth 10 pts each will initially be take-home, open-book, open-notes, collaborative efforts, in which groups of up to 3 students may jointly work to answer the quiz questions, and will turn in one answer sheet per group. Each group member will receive the same grade for the quiz. Take-home quizzes will be handed out at the end of approximately every 4th or 5th lecture and will be due at the next lecture.

Corrections/ Regrades:
Exams and quizzes will be returned to students to be used for subsequent study. Please check your exams and quizzes carefully against the posted answer keys. If you think you deserve a regrade, you must see me within one week of the day the exam or quiz was returned. Later requests will not be granted. If an exam is accepted for regrading, the entire exam, and not just a single question, will be regraded. Addition and recording errors will be gladly corrected and are exempt from this regrading policy.

Homework Problems:
Homework problems will be assigned from the text. These are to be completed and checked against the answers in the Solutions Manual. They are not to be handed in.

Dropping the Course or Withdrawal from the University:
Students wishing to drop this course must do so by November 16, 2005; students wishing to withdraw from all courses for the semester must do so by December 2, 2005. The student is responsible for filing the necessary paperwork in a timely fashion. The grade of Incomplete is reserved only for those students who have been doing passing work in the course but who are unable to complete all of the course requirements by the end of the semester due to some extenuating circumstances (usually an illness or serious emergency). Doing poorly in the course is not an extenuating circumstance.

Academic Honesty:
Academic dishonesty will not be tolerated. Academic dishonesty includes plagiarism, cheating, and collusion, as defined in the student handbook:
http://www.mnms.edu/supersite/administration/basic-stuff/policies.html
Students found guilty of academic dishonesty will receive a failing grade in the course.

Disabilities:
Students with disabilities (physical or learning), please let me know (in private) and/or contact the Disabilities Services Office (ML 132, V/TTY ext. 1819 or 2825), or the Center for Academic Success (ML 132 ext. 1791), so that appropriate arrangements can be made.

Suggestions for Succeeding in Organic Chemistry:

1. Attendance (The world is run by those who show up). Show Up!! and take detailed notes. Although attendance is not mandatory, there is a good correlation between class attendance and academic performance. There may also be some material presented in class, or extra study sheets or problem sets handed out, which are intended to supplement material in the text.

2. Read the Text Before Lecture. Reading the appropriate chapter of the textbook at the beginning of class will make the lecture material less strange and more understandable. Knowing what is in the book will also mean that you can take notes that will supplement the material in the text. Reading the text or doing problems for the first time the night before exams will most likely lead to minimal understanding and poor performance on the exams.

3. Take Notes in Lecture. Taking detailed notes is a relatively painless way to help your self remember the material in this course. Just the act of writing something down, which requires concentration and attention to detail as well as the exercise of focused mechanical action, begins to pattern your mind to recall and reproduce that which is written. Also, please do not hesitate to ask questions in lecture if something is unclear. Most of the material is completely new to you and additional examples in lecture may aid in the understanding of some concepts.

4. Compare Text and Notes. After lecture, compare your lecture notes with the text material, and review each to comprehend the material they cover. Take note of the material emphasized in the
lecture, and the way its presentation is similar to or different from that in the text. Looking at a concept from more than one perspective can frequently enhance your understanding of it.

5. Homework Problems. WORK LOTS OF PROBLEMS. On quizzes and exams you will be required mainly to apply your knowledge of organic chemistry to new (but analogous) examples of compounds and situations rather than regurgitate memorized definitions, principles, reactions, and mechanisms. To learn how to do this, do the suggested problems, consulting your notes and the text to determine the concepts or reactions that need to be applied to answer a given question. These problems will help you learn some of the ways in which information can be applied, and whether you understand the principles involved and their application to a variety of situations. Problems in the body of the text tend to exemplify the application of principles discussed in the section immediately preceding the questions; problems at the end of the chapter can embody any of the topics in the chapter, but tend to start with less difficult, more straightforward questions and proceed to more demanding questions.

Check your answers with those in the Solutions Manual. If your answer is correct, try a few more problems of the same type. If it seems you understand the application of a given concept or principle, go on to a new type of question (although the last examples in multi-part questions sometimes add some new twist; or additional complexity, it is unnecessary to do every example of a given type of problem before going on to other questions; save the remainder for additional practice just prior to an exam). If your answer is incorrect initially, try to understand from the correct answer how to do other problems of the same type and try other examples. If after 15 minutes or so you still cannot figure out what you should be doing to get the correct answers for a given type of question, you need additional input (from other students, lab instructors, the course instructor, or a tutor), and you should stop banging your head against this wall until you get further explanation. Go on to the next type of problem; sometimes other problems will provide clues to answering previous questions. Be aware that there are probably a few typographical mistakes in the Solutions Manual. There is also the possibility that more than one answer is correct in some cases, which is common among synthetic problems.

6. DON'T GET BEHIND! Keep up with the material being presented in the lecture and with the corresponding homework problems in the textbook (see suggestion 5). Reading the text or doing problems for the first time the night before exams will most likely lead to minimal understanding and poor performance on the exams. Plan to spend AT LEAST 2-3 hours of study for each 1 hour of lecture.

7. Study Techniques. Organic chemistry is a demanding course, but it is not impossible. Each piece of material you will be exposed to is not particularly difficult, but the volume of material is considerable and the pace of the course is rapid. Memorization of material is required, but rote memory alone will not suffice. You need to relate apparently isolated pieces of information to one another, such as by comparison or contrast, in order to assist your memory, and to understand common ideas and principles in seemingly unrelated situations.

For example, sometimes there are several reactions beginning with the same type of starting compound that result in the same type of product using different reagents and conditions: in what way(s) are these reactions similar and how do they differ? Are their mechanisms similar or different, and can this result in different products with starting materials having some specific structural characteristics? What are the advantages and disadvantages of each reaction (experimental ease, cost or hazards of reagents, yield, control of product structure, etc.)? Sometimes a number of reactions have the same or similar mechanisms, even though they use vastly different starting compounds and yield considerably different types of products. Or an array of reactions can all produce the same type of compound (perhaps by different mechanisms) even though they begin with a variety of different types of starting materials and reagents. Correlation, Comparison/Contrast, Similarities/Differences, Advantages/Disadvantages, etc., can help you remember the features of a vast array of seemingly isolated reactions by relating them to one another.

Once you think you understand a given body of information and its applications, you should try to organize the material (in writing) in as logical a fashion as you can. Write down relevant terms and definitions, and write out a roster of the reactions covered and general examples of the mechanisms discussed. Once all of your understanding is organized and written down (remember, writing helps memory), then you can proceed to memorize the necessary material as a final preparation for an exam.
Chemistry 320 - Organic Chemistry I
Fall Semester, 2005
Laboratory Schedule

Text and Course Materials:
2. Safety glasses or goggles (purchased from the ACS Chemistry Club or elsewhere) (required).
3. Organic Chemistry Laboratory Notebook, by Brooks Cole or Chemistry Education Resources (CER). This is an NCR carbonless copy notebook to allow copies of laboratory notes to be turned in for each lab (required).
5. A pair of rubber gloves, and a lab coat or plastic or rubberized apron, would also be beneficial.

Laboratory Course Objectives:
The laboratory is designed to illustrate a variety of typical organic reactions; exemplify some of the reagents, conditions, and catalysts used in these reactions; reveal the physical and chemical properties of molecules containing a range of organic functional groups; demonstrate and give students experience using typical organic laboratory apparatus, and techniques or procedures for separation, purification, and determination of purity, such as melting point range determination, recrystallization, distillation and boiling point determination, extraction, and drying.

List of Experiments:

<table>
<thead>
<tr>
<th>Week</th>
<th>Date (T,W,R; M)</th>
<th>Experiments (Microscale unless otherwise stated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Aug 29–31, Sept 1</td>
<td>Check-In, Lab Orientation, & Safety</td>
</tr>
<tr>
<td>2.</td>
<td>Sept 6–8; 12</td>
<td>Exps 1 & 2. Exp 1: Purification by Crystallization (Chap 3, pg 57-59)</td>
</tr>
<tr>
<td>4.</td>
<td>Sept 20–22; 26</td>
<td>Exp 3: Simple and Fractional Distillation (Chap 5, pg 89-91)</td>
</tr>
<tr>
<td>5.</td>
<td>Sep 27–9; Oct 3</td>
<td>Exp 4: Alkenes from Alcohols: Cyclohexene (Chap 19, pg 287-90)</td>
</tr>
<tr>
<td>6.</td>
<td>Oct 4–6; 10</td>
<td>Exp 5: Catalytic Hydrogenation: Transfer Hydrogenation of Olive Oil (Chap 24.5, pg 349-51); Hydrolysis to Soap (Chap 40.6, pg 496-97)</td>
</tr>
<tr>
<td>8.</td>
<td>Oct 18–20; 24</td>
<td>Exp 7: Oxidative Coupling of Alkynes: 2,7-Dimethyl-3,5-octadiyn-2,7-diol (Chap 24, pg 335-37)</td>
</tr>
<tr>
<td>11.</td>
<td>Nov 8–10; 14</td>
<td>Exp 10a: Oxidation: Cyclohexanol to Cyclohexanone (Ch 22.3, pg 317-19) Exp 10b: Oxidation: Cyclohexanone to Adipic Acid (Ch 22.6, pg 322)</td>
</tr>
<tr>
<td>15.</td>
<td>Dec 5–8</td>
<td>Check-Out; Make-up Lab (if needed)</td>
</tr>
</tbody>
</table>
La! Views Website: http://www.intech.mnsu.edu/groh/MasterLabPage.htm
Images of the steps in many of the experiments (Courtesy of Dr. Brian Groh).

ChemFinder Website: http://chemfinder.cambridgesoft.com/
Data on the physical properties of organic compounds (MW, Formula, mp, bp, density, refractive index, MSDS and other hazard information)
Data on the physical properties of the organic compounds we use in lab can also be obtained from Sigma-Aldrich and Acros chemical catalogs found in the Lab (TN 362) or in the Chemistry Study Room, TN 247. Looking in these catalogs has the advantage that you can find compounds listed by the common names we tend to use rather than their fully systematic or IUPAC names.

Laboratory Grade:
Your laboratory grade will be based mainly on weekly question sheets (10 pts each) that will deal with the overall reaction or procedure exemplified in each experiment, its extension to other similar molecules (generalization), its mechanism, and practical aspects of techniques and procedures. These answer sheets will be due at the beginning of lab the week after all of the work on a given lab (including weighing and determining the melting point range of solid products after they have dried for a week after initial isolation). Your safety and technique grade will be the instructor's overall subjective assessment of your preparedness in the lab, your pre-lab write-ups and notebook-keeping, and your adherence to safety rules and principles.
Chem 320 - Fall, 2005 - Course Outline

Walk-In Tutoring Available at the Center for Academic Success ML 0132.
CHEM 100, 105, 111, 201, 202
Check their website for hours... http://www.mnsu.edu/learnnc/

[Actually: http://wps.prenhall.com/esm_organic_wade_5 See Instructor Resources (bottom of page) or the “Jump to” bar at the upper left of the window. The companion site for the 6th Edition is not yet as good as the one for the 5th Edition.]

Background:
Chapter 1 - Introduction and Review (pp. 1–38)
Chapter 2 - Structure and Properties of Organic Molecules (pp. 39–80)

Lectures:
Chapter 3 - Structure and Stereochemistry of Alkanes (pp. 81–124)
Chapter 4 - The Study of Chemical Reactions (pp. 125–166)
Chapter 7 - Structure and Synthesis of Alkenes (pp. 279–320)
Chapter 8 - Reactions of Alkenes (pp. 321–381)
Chapter 9 - Alkynes (pp. 382–416)
Chapter 5 - Stereochemistry (pp. 167–211)
Chapter 19.1–19.7 - Amines: Nomenclature, Structure, Properties, Basicity, Salts (pp. 870–882)
Chapter 6.1–6.6 - Alkyl Halides: Nomenclature, Uses, Structure, Properties, Preparations (pp. 212–224)
Chapter 6.7–6.21 - Alkyl Halides: Nucleophilic Substitution and Elimination (pp. 225–278)
Chapter 10 - Structure and Synthesis of Alcohols (pp. 417–459)
Chapter 11 - Reactions of Alcohols (pp. 460–507)
Chapter 18 - Ketones and Aldehydes (pp. 805–869)
Chapter 20 - Carboxylic Acids (pp. 935–977)
Chapter 21 - Carboxylic Acid Derivatives (pp. 978–1040)

ADDITIONAL CHAPTERS AS TIME PERMITS:
Chapter 14 - Ethers, Epoxides, and Sulfides (pp. 623–662)
Chapter 19.8–19.19 - Amines: Synthesis and Reactions (pp. 882–934)
Chapter 22 - Alpha Substitutions and Condensations of Enols and Enolate Ions (pp. 1041–1096)
Chapter 12 - Infrared Spectroscopy and Mass Spectrometry (pp. 508–558) (Superficial Coverage Only)
Chapter 13 - Nuclear Magnetic Resonance Spectroscopy (pp. 559–622) (Superficial Coverage Only)
Chapter 15 - Conjugated Systems, Orbital Symmetry, and Ultraviolet Spectroscopy (pp. 663–704)
Chem 320 - Fall, 2005
Course Outline and Homework Problems

Background:

Chapter 1 - Introduction and Review (pp. 1–38)

Problems: 1.1-1.9, 1.14-1.19; 1.23-1.26, 1.28-1.46.

Chapter 2 - Structure and Properties of Organic Molecules (pp. 39–80)

Problems: 2.1-2.10; 2.13-2.18; 2.25, 2.26; 2.32-2.41.

Lecture: (Read Chapter 2.12-2.14, pp.67–74 as Introduction to Chapter 3)

Chapter 3 - Structure and Stereochemistry of Alkanes (pp. 81–124)

Problems: 3.1-3.29, 3.33, 3.34, 3.37(except e), 3.39-3.44; 3.46.

Chapter 4 - The Study of Chemical Reactions (pp. 125–166)

Problems: 4.1-4.4; 4.7-4.25; 4.30; 4.35-4.43; 4.49.

Chapter 7 - Structure and Synthesis of Alkenes (pp. 279–320)

Problems: 7.1, 7.2, 7.4-7.10, 7.12, 7.16, 7.25, 7.29; 7.31-7.33, 7.35, 7.36, 7.38(a,b,c), 7.40-7.42, 7.44 (a,b,c), 7.46.

Chapter 8 - Reactions of Alkenes (pp. 321–381)

Problems: 8.1-8.11, 8.13, 8.15-8.18, 8.21, 8.22, 8.24, 8.27-8.29, 8.32(a,e), 8.34(a,c,e), 8.36, 8.37; 8.47, 8.48(a-d), 8.49, 8.50, 8.55(a,b), 8.58, 8.59(a,b,d).

Chapter 9 - Alkynes (pp. 382–416)

Problems:

Chapter 5 - Stereochemistry (pp. 167–211)

Problems: 5.1-5.24; 5.25-5.34.

Chapter 19.1–19.7 - Amines: Nomenclature, Structure, Properties, Basicity, Salts (pp. 870–882)

Problems:

Chapter 6.1–6.6 - Alkyl Halides: Nomenclature, Uses, Structure, Properties, Preparations (pp. 212–224)

Problems: 6.1-6.3, 5.5-6.7, 6.9, 6.10, 6.42, 6.43.

Chapter 6.7–6.21 - Alkyl Halides: Nucleophilic Substitution and Elimination (pp. 225–278)

Problems: 6.11-6.27, 6.29-6.40; 6.44-6.56, 6.58-6.66.

Chapter 10 - Structure and Synthesis of Alcohols (pp. 417–459)

Problems: 10., 10.2, 10.4, 10.5, 10.9, 10.10, 10.12-10.20, 10.22-10.26;

Chapter 11 - Reactions of Alcohols (pp. 460–507)

Problems: 11.1, 11.2, 11.5-11.8, 11.31;
Chapter 18 - Ketones and Aldehydes (pp. 805–869)

Problems:

Chapter 20 - Carboxylic Acids (pp. 935–977)

Problems:

Chapter 21 - Carboxylic Acid Derivatives (pp. 978–1040)

Problems:

ADDITIONAL CHAPTERS AS TIME PERMITS:

Chapter 14 - Ethers, Epoxides, and Sulfides (pp. 623–662)

Problems:

Chapter 19.8–19.19 - Amines: Synthesis and Reactions (pp. 882–934)

Problems:

Chapter 22 - Alpha Substitutions and Condensations of Enols and Enolate Ions
(pp. 1041–1096)

Problems:

Chapter 12 - Infrared Spectroscopy and Mass Spectrometry
(pp. 508–558) (Superficial Coverage Only)

Problems:

Chapter 13 - Nuclear Magnetic Resonance Spectroscopy
(pp. 559–622) (Superficial Coverage Only)

Problems:

Chapter 15 - Conjugated Systems, Orbital Symmetry, and Ultraviolet Spectroscopy
(pp. 663–704)

Problems:

Chapter 16 - Aromatic Compounds (pp. 705–748)

Problems:

Chapter 17 - Reactions of Aromatic Compounds (pp. 749–804)

Problems: