Please type or select the requested information. Print completed forms, add appropriate paper attachments, and route through MSU's curricular process for recommendations and decisions.

College:	Science, Engineering and Technology	Proposal #	173
Department:	Computer Science	Effective Date of Change:	
Program:	Computer Science	Academic Year:	2007-2008
Type of Change:	PROGRAM PROPOSALS	(For Office Use Only)	
Proposed:	Change in Requirements-Course(s) Added	Course Designator and Number	
Title Current:		Number of Credits	
Title Proposed:		(if applicable)	

24-Char. Abbrev: | |

Include a course or program description for the Bulletin (30-40 words maximum for courses, 100 for programs):

No change to program description.

Rationale or Justification for change:
The attached modifications correct a missing line in the list of required courses, change the required science elective based on the change to the calculus-based Physics sequence, and generalize the set of courses that may be used for the required electives.

For General Education or Cultural Diversity Courses Only

<table>
<thead>
<tr>
<th>General Education Course:</th>
<th>Cultural Diversity Course:</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE Category #</td>
<td>GE Category Name</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

For Writing Intensive Courses, attach a description of the kind and quantity of writing.

For Upper Division Courses, include a description of the respects in which it is broad and general rather than narrow and specific, and so suitable as GE.

Attach paper copies of the following:

- a. Syllabus or course outline.
- b. Course's student learning outcomes associated with each GE competency or CD designation.
- c. List of strategies to be used to assess students' achievement of each GE competency or CD designation.

For New Courses

<table>
<thead>
<tr>
<th>(Check all that apply:)</th>
<th>Instructional Type:</th>
<th>Lecture</th>
<th>Course will be offered:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grading Format:</td>
<td>Grade</td>
<td>P/N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other courses are being changed or eliminated. (Explain.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Course content or title is similar to courses in other departments. (Attach copy of letter of agreement with other program(s) contacted. Indicate the nature of the discussions and/or resolution of differences or potential conflicts.)

Attach paper copies of the following:

- a. Syllabus or course outline.
- b. Course's student learning outcomes.
- c. A list of resources required to offer and support this course.
- d. A description of how teaching this course will affect department staffing.
- e. If 400/500 level course, an explanation of added expectations of graduate students.

Revised September 2002
<table>
<thead>
<tr>
<th>Department</th>
<th>Recommended (Category/ies)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>College Curriculum Committee</th>
<th>Recommended (Category/ies)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>College Dean</th>
<th>Recommended (Category/ies)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>General Education Subcommittee</th>
<th>Recommended (Category/ies)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Undergraduate Curriculum and Academic Policy Committee</th>
<th>Recommended (Category/ies)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12/11/07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Faculty Association Graduate Committee</th>
<th>Recommended</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Graduate Dean</th>
<th>Recommended</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Academic Affairs Council</th>
<th>Recommended (Category/ies)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/24/08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Senior Vice President and Vice President for Academic Affairs</th>
<th>Approved (Category/ies)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/26/08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
</table>

3 Revised September 2002
Computer Science Faculty Meeting 11-13-07

In Attendance: Sanchez, Bates, Case, Sallam Kelley Haddix

Bates made the motion to approve the previous minutes of 101-5-07.
Sanchez seconded the motion.
No discussion.
Motion passed

Bates made the motion to accept the revised curriculum proposal for adjusting the
Physics science sequence with the proposal revised based on the recommendation of the
college curriculum committee. The revised proposal is a program proposal rather than a
bulletin change.
Sallam seconded the motion.
No discussion
Motion passed.

Respectfully Submitted,

Mary Asher
Department Secretary
EET 491 (1-4) In-Service

EET 492 (4) Integrated Circuit Technology
Semiconductor industry and overview of integrated circuit manufacturing, integrated circuit types, crystal growth and wafer manufacturing, physics of semiconductor materials, detail of major IC fabrication steps, process yield, semiconductor devices and integrated circuit formation, packaging, and semiconductor measurements, introduction to layout tools.
Pre: EET 223
Spring

EET 497 (1-6) Internship
Should be taken at end of Junior year.
Permission required. Prereq: 40 hrs EET credits or written permission from program coordinator.
Fall, Spring

EET 498 (1-4) Topics
Varied topics in Electronic and Computer Engineering Technology. May be repeated as topics change.
Prerequisite: to be determined by course topic.

EET 499 (1-4) Individual Study
Fall, Spring

Computer Science
College of Science, Engineering & Technology
Department of Computer Science
273 Wissink Hall • 507-389-2968
Web site: www.cset.mnsu.edu/cs
Chair: David Haglin
Rebecca Bates, Steven Case, David Haglin, Dean Kelley, Hamed Sallam, Julio Sanchez

Bachelor's degree programs offered by the Department of Computer Science prepare students for positions in computer-related fields as well as advanced post-graduate study. Computer science is a field that spans a wide range of topics from theoretical and algorithmic foundations to cutting-edge developments in robotics, computer vision, computational linguistics, intelligent systems, and bioinformatics. The department offers a minor and major in Computer Science. Admission to the Major is granted by the department. Admission to the Major is required before the student is permitted to take 300- and 400-level courses. Requirements are:
- A minimum of 32 earned semester credits
- Completion of MATH 121 with a grade of "C" or better
- Completion of ENG 101 with a grade of "C" or better
- Completion of CS 110 with a grade of "B" or better
- Completion of CS 111, CS 210, and CS 220 with a grade of "C" or better
- A GPA of 2.5 in these courses (or their equivalents).

COMPUTER SCIENCE BS
Required General Education (7 credits):
ENG 101 Composition (4)
SPEE 100 Fundamentals of Speech Communication (3)

Required Support Courses (7 credits):
ENG 271 Technical Communication (4)

Choose one of the following Speech courses
SPEE 101, SPEE 102, SPEE 202, SPEE 203, SPEE 315, SPEE 325, SPEE 333, or SPEE 403.

Required for Major (Core, 71 credits):
CS 110 Computer Science I (4)
CS 111 Computer Science II (4)
CS 210 Data Structures (4)
EE 106 Intro to Electrical/Computer Engineering I (3)
CS 220 Machine Structures and Programming (3)
CS 300 Large-Scale Software Development (4)
CS 310 Algorithm Analysis (3)
CS 320 Computer Architecture (3)
CS 340 Concepts of Database Management Systems (3)
CS 350 Network Architecture (3)
CS 370 Concepts of Programming Language (3)
CS 380 Analysis and Design of Software Systems (3)
CS 410 Formal Languages/Abstract Machines (3)
CS 460 Operating Systems (3)
CS 495 Computer Science Seminar (1)

MATH 121 Calculus I (4)
MATH 122 Calculus II (4)
MATH 247 Linear Algebra I (4)
STAT 354 Concepts of Probability and Statistics (3)
MATH 375 Introduction to Discrete Mathematics (4)

Capstone Experience (14 credits):
CS 490 Senior Capstone I (4)
CS 497 Internship (1-4)
CS 498 Senior Thesis (4)

Required Electives (CS, 9 credits)*:
Choose an additional nine credits of coursework from the following courses:
CS 230 Intelligent Systems (4)
CS 360 Systems Programming (3)
CS 361 Windows Programming (3)
CS 415 High Performance Computing (3)
CS 420 Advanced Computer Architecture (3)
CS 425 Real-time and Embedded Systems (3)
CS 430 Artificial Intelligence (3)
CS 431 Computational Linguistics (3)
CS 432 Data Mining/Machine Learning (3)
CS 452 Network Protocol Internals (3)
CS 454 Mobile & Wireless Networks (3)
CS 470 Compilers (3)
CS 478 Advanced Programming Practices (3)
CS 496 Selected Topics in Computer Science (1-4)
CS 499 Individual Study (1-2)
ISYS 202W Computers in Society (4)

* minimum of 6 credits of required electives must be of 400-level
The following courses are not to be used in this major: CS 171, CS 209, CS 293, CS 294, CS 493.

Required Electives (Science, 12 credits):
Choose one of the following sequences:
BIOL 105W General Biology I (4)*
BIOL 106 | General Biology II (4) OR
CHEM 201 | General Chemistry I (5)*
CHEM 202 | General Chemistry II (5) OR
GEOL 121 Physical Geology (4)*
GEOL 122 Earth History (4)* OR
PHYS 221 General Physics I (5)*
PHYS 222 General Physics II (5) AND
Any class numbered 200 or above in Astronomy, Biology, Chemistry, Geology, or Physics or one class from another sequence listed above.

* May be used to fulfill General Education requirements.
Required Minor: Yes. Any. Note that the Mathematics requirements specified above fulfill the requirements for a mathematics minor.
COMPUTER SCIENCE MINOR

Required for Minor (Core, 11 credits):
CS 110 Computer Science I (4)
CS 111 Computer Science II (4)
EE 106 Introduction to Electrical/Computer Engineering I (3)

Choose three of the following courses:
CS 210 Data Structures (4)
CS 220 Machine Structures and Programming (3)
CS 310 Algorithm Analysis (3)
CS 320 Computer Architecture (3)
CS 350 Network Architectures (3)
CS 360 Systems Programming (3)
CS 370 Concepts of Programming Languages (3)
CS 380 Analysis and Design of Software Systems (3)
CS 420 Advanced Computer Architecture (3)
CS 452 Network Protocol Internals (3)
CS 460 Operating Systems (3)
CS 470 Compilers (3)

For a hardware emphasis, students should choose CS 220, CS 320, and CS 420. For a networking emphasis, students should choose CS 210, CS 350, and CS 452.

POLICIES/INFORMATION

GPA Policy: A GPA of 2.5 or higher in courses required for a major or minor in the Department of Computer Science is required for graduation. This GPA requirement is calculated and must be maintained for each of the following areas: 1) for the combined Required General Education and Required Support Courses, or their substitutions, if any; 2) for the Required for Major and Required Electives courses. Refer to the College catalog required advising for students on academic probation.

Grading Policy: All coursework applied towards a major or minor, including required general education and support courses, must be taken for a letter grade except for courses offered only as P/N. A minimum grade of "C" is required in all courses which are to be applied towards a departmental major or minor program, including those required courses which are in supporting areas such as ENG 271. In addition, a minimum grade of C is required for all prerequisite courses. Grades of "D" are not accepted by the department. Any student who receives a "D" or "F" in a CS class, or who drops a CS class after the first two weeks of the semester, will have a hold placed on CS classes put on his/her registration. In other words, he/she will not be able to register for future CS courses until the hold is released. To have the hold released, the student must meet with his/her advisor and present the advisor with an appeal form. This form will be available from the Office of Computer Science (123 Wisink Hall).

Incomplete Policy: An incomplete grade for a course will generally be given only under two conditions. The first condition is illness — a doctor’s written recommendation must be supplied. The second condition arises when a death in the student’s family has caused the student to be away from the campus for an extended period of time. The student must have a satisfactory grade ("C" or better) in the course at the time of the onset of the condition.

Residency: At least 50 percent of the computer and information sciences credits required for a major or minor from this department must be earned at Minnesota State Mankato.

COURSE DESCRIPTIONS

CS 110 (4) Computer Science I
Students will learn programming skills using a object-oriented C++. Students will design algorithms and learn how to write, compile, run and debug programs that include selection and repetition structures, functions, and arrays. Study skills and professional development will be addressed.
Pre: MATH 112 (College Algebra)
Fall, Spring

CS 111 (4) Computer Science II
Continues the exploration of introductory Computer Science begun in CS 110. Focus is on developing basic knowledge of algorithms, programming skills and problem solving techniques. Topics include recursion, sorting, linked lists, stacks and queues.
Pre: MATH 115 or MATH 113, and CS 110
Fall, Spring

CS 171 (2) Introduction to C++ Programming
This course provides an introduction to programming using C++. Emphasis on structured programming concepts, with a brief discussion of object-oriented programming. Control structures, expressions, input/output, arrays and functions.
Pre: MATH 113 or MATH 115
Fall, Spring

CS 209 (2) C++ for Java Programmers
C++ syntax for students who already know Java. Specific topics: data types, operators, functions, arrays, string operations, pointers, structures, classes, constructors, destructors, pointers as class members, static classes, "this" pointer, operator functions, data type conversions, inheritance, polymorphism, and dynamic binding.
Pre: Consent
Variable

CS 210 (4) Data Structures
Investigates efficient data structuring techniques to support a variety of operations in different problem scenarios. Topics include binary trees, binary search trees, multiway search trees, hashing and hash tables, priority queues, and algorithm analysis for best, worst and average cases.
Pre: CS 111 and MATH 121
Fall, Spring

CS 220 (3) Machine Structures and Programming
This course introduces students to assembly language programming and basic machine structures. Topics include number systems; basic central processing unit (CPU) organization, instruction formats, addressing modes and their use with a variety of data structures; and parameter passing techniques.
Pre: CS 110 and EE 106
Fall, Spring

CS 230 (4) Introduction to Intelligent Systems
Fundamentals of data mining and knowledge discovery. Methods include decision tree algorithms, association rule generators, neural networks, and web-based mining. Rule-based systems and intelligent agents are introduced. Students learn how to apply data-mining tools to real-world problems.
Pre: CS 110
Fall

CS 293 (1) MAX Scholar Seminar
This class provides MAX scholars with an opportunity to explore a set of topics related to achieving success in academic, professional and personal realms. Speakers will include faculty, graduate students, visiting researchers and industry members as well as student participants.
Pre: Recipient of a MAX scholarship or instructor consent
Fall, Spring

CS 295 (1) Computer Science Seminar
Provides students interested in a computer science major or minor an opportunity to explore topics not normally covered in the curriculum. Speakers will include faculty, graduate students, undergraduate students admitted to the Computer Science major, visiting researchers and industry members.
Fall, Spring

CS 296 (1-2) Introduction to Selected Topics
Special topics not covered in other 100 or 200-level courses. May be repeated for each new topic.
Variable
CS 300 (4) Large-Scale Software Development
A team-based capstone experience for the mid-point of the CS program. Students are introduced to principles and methodologies of large-scale software development and engineering by working on a full life-cycle software project solving a substantial problem using multiple CS concepts.
Pre: CS 210 and CS 220
Spring

CS 310 (3) Algorithm Analysis
Algorithm design and analysis is central to much of computer science. This course exposes students to fundamental algorithm design and analysis techniques. Topics include many of the basic topic areas of computer science: searching, sorting, numeric computation, data representation, communication.
Pre: CS 210
Fall

CS 320 (3) Computer Architecture
This course presents historical and current concepts and implementations of computer organization. Topics include instruction set design, digital storage, performance metrics, processor datapath and control, pipelining, memory hierarchy, buses and I/O interfacing, and parallel processors.
Pre: CS 111 and CS 220, or EE 234 and EE 334
Spring

CS 340 (3) Concepts of Database Management Systems
This course covers the fundamentals of database management focusing on the relational data model. Topics include database organization, file organization, query processing, concurrency control, recovery, data integrity, optimization and view implementation.
Pre: CS 210 and CS 320
Fall

CS 350 (3) Network Architectures
An introduction to data communications and networks. The field encompasses local area networks, wide area networks, and wireless communication. Topics include digital signals, transmission techniques, error detection and correction, OSI model, TCP/IP model, network topologies, network protocols, and communications hardware.
Pre: CS 210 and CS 320
Spring

CS 360 (3) Systems Programming
This course focuses on machine level I/O and operating system file processing. Structure of systems programs including assemblers, linkers, and object-oriented utilities and interfaces. Students will gain experience in writing utility programs and extensions to an operating system.
Pre: CS 111 or EE 107, and CS 320
Fall

CS 361 (3) Windows Programming
This course introduces the student to Windows programming in C++ using the Application Programming Interface. Windows programs are created in a visual development environment which includes editing and code generating facilities. Hands-on programming skills are developed in the lab.
Pre: CS 210
Fall

CS 370 (3) Concepts of Programming Languages
Fundamental concepts of programming languages, including principles of language design, language constructs, and comparison of major languages. Topics: formal methods of examining syntax and semantics of languages and lexical analysis of language components and constructs, and propositional and predicate calculus.
Pre: CS 210
Fall

CS 380 (3) Analysis and Design of Software Systems
Students are introduced to techniques used in analysis and design of software systems. Traditional techniques are reviewed and current methodologies for both object-oriented and procedural systems are studied. Standard notations used to document software requirements and designs are presented.
Pre: CS 300
Spring

CS 410 (3) Formal Languages/Abstract Machines
This course studies the theoretical foundations of modern computer science, focusing on three main models of computation: DFA, PDA, and Turing Machines. Students determine model capabilities and limitations: what is and is not computable by each of them.
Pre: CS 310 and MATH 375
Fall

CS 415 (3) High Performance Computing
High Performance Computing techniques and algorithms are used to address problems in computational science. Topics include applications of parallel computing, hardware design of modern computing models, methods of measuring and characterizing serial and parallel performance.
Pre: CS 310, CS 350, and MATH 247
Variable

CS 420 (3) Advanced Computer Architecture
This course addresses advanced topics in computer architecture including a major emphasis on measuring and improving computer performance. Topics include advances in pipelining and analysis and optimization of storage systems and networks, multiprocessor challenge and trends.
Pre: CS 320 and MATH 375
Variable

CS 425 (3) Real-time and Embedded Systems
This course provides an overview of embedded real-time systems including design principles, methodologies and problem solving techniques. Students design and build a real-time operating system with a microprocessor to host real-time service data processing using sensor/actuator devices.
Pre: CS 210 and CS 320
Variable

CS 430 (3) Artificial Intelligence
Basic introductory concepts and a history of the field of Artificial Intelligence (AI) are covered. Emphasis is placed on the knowledge representation and reasoning strategies used for AI problem solving. Solutions are found using the LISP programming language.
Pre: CS 210 or CS 230
Fall-Alt

CS 431 (3) Computational Linguistics
Computational linguistics topics covered include regular expressions, finite state automata, information theory, context free grammars, hidden Markov models and Viterbi algorithms. Students will work on problems within the field including parsing, machine translation, speech recognition, information extraction and parsing.
Pre: CS 210 or CS 230
Fall-Alt

CS 433 (3) Data Mining and Machine Learning
A blend of computer science, information science, and statistics for storing, accessing, modeling, and understanding large data sets. Topics include fundamental data mining algorithms: decision trees, classification, regression, association rules, statistical models, neural networks, and support vector machines.
Pre: CS 210 and STAT 354
Spring-Alt

CS 452 (4) As an ad
As an ad
protocol technolo
data thrc protocol.
Pre: CS
Variable

CS 454 (3) Emergin
Emergin
standard develop
cludes p
Pre: CS
Variable

CS 460 (3) This co
comput interpere
alocați
cstorage
Pre: CS
Spring

CS 470 (3) This co
comput
an moder
Pre: C
Variable

CS 48 (3) This c
develo
bject e
nterfa
Pre: C
Variable

CS 49 (3) Studen
field o
science
Pre: S
Spring

CS 45 (3) This c
in ac gra
ments
Pre: I
Fall

CS 4 (1) Proiv
not n
stude
resen
Pre: F
Fall
CS 452 (3) Network Protocol Internals
As an advanced coverage of data communication, this course explores principles, protocols, and performance evaluation techniques of advanced networking technologies. Topics include error detection and recovery, flow control, routing, data throughput, and performance analysis of existing and emerging Internet protocols.
Pre: CS 350 and STAT 354
Variable

CS 454 (3) Mobile and Wireless Networks
Emerging mobile and wireless data networks technologies covered include standard wireless protocols (e.g., Bluetooth, IEEE 802.11, RFID, and WAP), and development of mobile and wireless applications (e.g., J2ME, WML, Brew). Includes research, design, and implementation of a wireless mobile application.
Pre: CS 320 and CS 350
Variable

CS 460 (3) Operating Systems: Design & Implementation
This course studies historical and current concepts and implementations of computer operating systems. Basic operating systems topics include processes, interprocess communication, interprocess synchronization, deadlock, memory allocation, segmentation, paging, resource allocation, scheduling, file systems, storage devices, protection, security, and privacy.
Pre: CS 210 and CS 320
Spring

CS 470 (3) Compilers
This course offers an introduction to specification and implementation of modern compilers. Topics include lexical scanning, parsing, type checking, code generation and translation, optimization, and compiler front and back end support for modern programming languages. Students build a working compiler.
Pre: CS 370
Variable

CS 480 (3) Advanced Programming Practices
This course covers advanced programming for general-purpose software development. Topics include tools and techniques appropriate for employing object-oriented design and programming within a framework of software development, environment and advanced data structures and algorithms, graphical user interfaces, and software development processes.
Pre: CS 300 and CS 380
Variable

CS 490 (4) Senior Capstone
Students gain experience working with a team on a substantial problem in the field of computer science using concepts that span several topic areas in computer science. Class time focuses primarily on project design and implementation.
Pre: Senior standing and successful completion of all core requirements.
Spring

CS 493 (1) MAX Scholar Seminar
This class is for MAX scholars and covers topics related to achieving success in academic, professional, and personal realms. Speakers will include faculty, graduate students, visiting researchers, and industry members. Students will mentor lower division scholars and do presentations.
Pre: Recipient of a MAX scholarship or instructor consent
Fall, Spring

CS 495 (1) Computer Science Seminar
Provides Computer Science majors or minors an opportunity to explore topics not normally covered in the curriculum. Speakers will include faculty, graduate students, undergraduate students admitted to the Computer Science major, visiting researchers and industry members. This class may be repeated for credit.
Pre: Prequisite: Admitted to major
Fall, Spring

CS 496 (1-4) Selected Topics in Computer Science
Special topics not covered in other courses. May be repeated for credit on each new topic.
Pre: Consent
Variable

CS 497 (1-6) Internship
This course is designed to provide students with an opportunity to utilize their training in a real-world environment. Participants work under the guidance and direction of a full-time staff member. (At most 4 hours towards the CS major.)
Pre: Permanent admission to the CS major. CS 300, consent.

CS 498 (4) Senior Thesis
Advanced study and research required. Topic of the senior thesis determined jointly by the student and the faculty advisor.
Pre: Senior standing and consent
Fall, Spring

CS 499 (1-2) Individual Study
Problems in the field of computer science are studied on an individual basis under the guidance of a faculty mentor.
Pre: Consent
Fall, Spring

Construction Management

College of Science, Engineering & Technology
Department of Interior Design & Construction Management
354 Wreeceing Center 507-389-6385
www.MankatoConstructionDegree.com

Chair: Scott Fee

Construction Management Major:
The Construction Management major prepares graduates for success in the rapidly changing construction industry. Coursework emphasizes management (including a required minor in Business Administration) with an additional focus on technology and systems specific to the construction industry. Typical entry-level positions include field manager, assistant superintendent, project engineer, scheduler, assistant estimator, project cost controller and safety director.

Admission to Major is granted by the College of Science, Engineering and Technology. Minimum University admission requirements are:
- A minimum of 32 earned semester credit hours
- A minimum cumulative GPA of 2.00
Contact the CSET Advising Center for application procedures.

CONSTRUCTION MANAGEMENT BS - Core (42 credits):

CM 106 Construction Experience (1)
CM 111 Intro to Design & Construction Management (1)
CM 212 Surveying & Site Planning (2)
CM 215 Fundamentals of Estimating (3)
CM 216 Construction Methods (3)
CM 248 Contract Documents (2)
CM 250 Mechanical & Electrical Systems (3)
CM 281 Architectural Graphics (3)
CM 311 Equipment Management (2)
CM 312 Foundations & Concrete Structures (3)
CM 413 Cost Estimating & Bidding (3)
CM 414 Advanced Estimating & Scheduling (3)
CM 424 Construction Safety & Loss Control (2)
CM 445 Construction Systems Management (3)
CM 497 Internship (8)
Computer Science
College of Science, Engineering & Technology
Department of Computer Science
273 Wissink Hall • 507-389-2968
Web site: www.cset.mnsu.edu/cs

Chair: Steven Case

Rebecca Bates, Steven Case, Furman Haddix, David Haglin, Dean Kelley, Hamed Sallam, Julio Sanchez

Bachelor’s degree programs offered by the Department of Computer Science prepare graduates for positions in computer-related fields as well as advanced post-graduate study. Computer science is a field that spans a wide range of topics from theoretical and algorithmic foundations to cutting-edge developments in robotics, computer vision, computational linguistics, intelligent systems, and bioinformatics. The department offers a major and minor in Computer Science.

Admission to Major is granted by the department. Admission to the Major is required before the student is permitted to take 300- and 400-level courses. Requirements are:
- A minimum of 32 earned semester credits
- Completion of MATH 121 with a grade of C or better
- Completion of ENG 101 with a grade of C or better
- Completion of CS 110, CS 111, CS 210, and CS 220 with a grade of C or better and a GPA of 2.5 in these courses (or their equivalents).

COMPUTER SCIENCE BS
Required General Education (7 credits):
ENG 101 Composition (4)
SPEE 100 Fundamentals of Speech Communication (3)

Required Support Courses (7 credits):
ENG 271 Technical Communication (4)
Choose one of the following Speech courses: 101, 102, 202, 203, 315, 325, 333, or 403.

Required for Major (Core, 71 credits):
CS 110 Computer Science I (4)
CS 111 Computer Science II (4)
CS 210 Data Structures (4)
EE 106 Intro to Electrical/Computer Engineering 1 (3)
CS 220 Machine Structures and Programming (3)
CS 221 Machine Structures and Programming Lab (1)
CS 300 Large-Scale Software Development (4)
CS 310 Algorithm Analysis (3)
CS 320 Computer Architecture (3)
CS 340 Concepts of Database Management Systems (3)
CS 350 Network Architectures (3)
CS 370 Concepts of Programming Languages (3)
CS 380 Analysis and Design of Software Systems (3)
CS 410 Formal Languages/Abstract Machines (3)
CS 452 Network Protocol Internals (3)
CS 460 Operating Systems (3)
CS 470 Compilers (3)
For a hardware emphasis, students should choose CS 220, CS 320, and CS 420. For a networking emphasis, students should choose CS 210, CS 350, and CS 452.

POLICIES/INFORMATION

GPA Policy. A GPA of 2.5 or higher in courses required for a major or minor in the Department of Computer Science is required for graduation. This GPA requirement is calculated and must be maintained for each of the following areas: 1) for the combined Required General Education and Required Support Courses, or their substitutions, if any; 2) for the Required for Major and Required Electives courses including Category I courses, if any.
Refer to the College regarding required advising for students on academic probation.

Grading Policy. All coursework applied towards the major or minor, including required general education and support courses, must be taken for a letter grade except for courses offered only as P/N. A minimum grade of C is required in all courses which are to be applied towards a departmental major or minor program, including those required courses which are in supporting areas (such as ENG 271). In addition, a minimum grade of C is required for all prerequisite courses. Grades of D are not accepted by the department.

Incomplete Policy. An incomplete grade for a course will generally be given only under two conditions. The first condition is illness — a doctor's written recommendation must be supplied. The second condition arises when a death in the student's family has caused the student to be away from the campus for an extended period of time. The student must have a satisfactory grade (C or better) in the course at the time of the onset of the condition.

Residency: At least 50 percent of the computer science credits required for a major or minor from this department must be earned from the Department of Computer Science at Minnesota State University, Mankato.

COURSE DESCRIPTIONS

CS 110 (4) Computer Science I
Students will learn programming skills in object-oriented C++. Students will design algorithms and learn how to write, compile, run and debug programs that include selection and repetition structures, functions, and arrays. Study skills and professional development will be addressed. Pre: MATH 112 (College Algebra)
F, S

CS 111 (4) Computer Science II
Continues the exploration of introductory computer science begun in CS 110. Focus is on developing basic knowledge of algorithms, programming skills and problem solving techniques. Topics include recursion, sorting, linked lists, stacks and queues. Pre: MATH 115 or MATH 113, and CS 110
F, S

CS 171 (2) Introduction to C++ Programming
CS 295 (1) Computer Science Seminar
Provides students interested in a computer science major or minor an opportunity to explore topics not normally covered in the curriculum. Speakers will include faculty, graduate students, undergraduate students admitted to the Computer Science major, visiting researchers and industry members.
F, S

CS 296 (1-2) Introduction to Selected Topics
Special topics not covered in other 100 or 200-level courses. May be repeated for each new topic.
Variable

CS 300 (4) Large-Scale Software Development
A team-based capstone experience for the mid-point of the CS program. Students are introduced to principles and methodologies of large-scale software development and engineering by working on a full life-cycle software project solving a substantial problem using multiple CS concepts.
Pre: CS 210 and CS 220
S

CS 310 (3) Algorithm Analysis
Algorithm design and analysis is central to much of computer science. This course exposes students to fundamental algorithm design and analysis techniques. Topics include many of the basic topic areas of computer science: searching, sorting, numeric computation, data representation, communication.
Pre: CS 210
F

CS 320 (3) Computer Architecture
This course presents historical and current concepts and implementations of computer organization. Topics include instruction set design, digital storage, performance metrics, processor datapath and control, pipelining, memory hierarchy, busses and I/O interfacing, and parallel processors.
Pre: CS 111 and CS 220, or EE234 and EE334
S

CS 340 (3) Concepts of Database Management Systems
This course covers the fundamentals of database management focusing on the relational data model. Topics include database organization, file organization, query processing, concurrency control, recovery, data integrity, optimization and view implementation.
Pre: CS 210 and CS 320
F

CS 350 (3) Network Architectures
An introduction to data communications and networks. The field encompasses local area networks, wide area networks, and wireless communication. Topics include digital signals, transmission techniques, error detection and correction, OSI model, TCP/IP model, network topologies, network protocols, and communications hardware.
Pre: CS 210 and CS 320
S
analysis and optimization of storage systems and networks, multiprocessor challenges and trends.
Pre: CS 320 and MATH 375
Variable

CS 425 (3) Real-time and Embedded Systems
This course provides an overview of embedded and real-time systems including design principles, methodologies, design tools and problem solving techniques. Students design and build a real-time operation system with a microprocessor to host real-time service data processing using sensor/actuator devices.
Pre: CS 210 and CS 320
Variable

CS 430 (3) Artificial Intelligence
Basic introductory concepts and a history of the field of Artificial Intelligence (AI) are covered. Emphasis is placed on the knowledge representation and reasoning strategies used for AI problem solving. Solutions are found using the LISP programming language.
Pre: CS 210 or CS 230
F alt

CS 431 (3) Computational Linguistics
Computational linguistics topics covered include regular expressions, finite state automata, information theory, context free grammars, hidden Markov models and Viterbi algorithms. Students will work on problems within the field including parsing, machine translation, speech recognition, information extraction and parsing.
Pre: CS 210 or CS 230
F alt

CS 433 (3) Data Mining and Machine Learning
A blend of computer science, information science, and statistics for storing, accessing, modeling, and understanding large data sets. Topics include fundamental data mining algorithms: decision trees, classification, regression, association rules, statistical models, neural networks, and support vector machines.
Pre: CS 210 and STAT 354
Variable

CS 452 (3) Network Protocol Internals
As an advanced coverage of data communication, this course explores principles, protocols and performance evaluation techniques of advanced networking technologies. Topics include error detection and recovery, flow control, routing, data throughput, and performance analysis of existing and emerging Internet protocols.
Pre: CS 350 and STAT 354
Variable

CS 454 (3) Mobile and Wireless Networks
Emerging mobile and wireless data networks technologies covered include standard wireless protocols (e.g., Bluetooth, IEEE 802.11, RFID, and WAP), and development of mobile and wireless applications (e.g., J2ME, WML, Brew). Includes research, design, and implementation of a wireless, mobile application.
Pre: CS 320 and CS 350
Variable
CS 497 (1-6) Internship
This course is designed to provide students with an opportunity to utilize their training in a real-world environment. Participants work under the guidance and direction of a full-time staff member. (At most 4 hours towards the CS major.)
Pre: Permanent admission to the CS major, CS 300, consent.

CS 498 (4) Senior Thesis
Advanced study and research required. Topic of the senior thesis determined jointly by the student and the faculty advisor.
Pre: Senior standing and consent
F, S

CS 499 (1-2) Individual Study
Problems on an individual basis.
Pre: Consent
F, S