General Education Course:

<table>
<thead>
<tr>
<th>GE Category #</th>
<th>GE Category Name (Maximum of 3 Categories)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

* For Writing Intensive Courses, attach a description of the kind and quantity of writing.
* For Upper Division Courses, include a description of the respects in which it is broad and general rather than narrow and specific, and so suitable as GE.

Cultural Diversity Course:

(Please check one.)

- [] Core (At least 75% devoted to topics of race, gender, sexual orientation, age, class, and disabilities as they occur in United States Society.)
- [] Related (At least 25% devoted to the above topics or to a global perspective on topics related to African American, Asian, Hispanic, and Native American inhabitants of the United States.)

Attach paper copies of the following:

- a. Syllabus or course outline.
- b. Course's student learning outcomes associated with each GE competency or CD designation.
- c. List of strategies to be used to assess students' achievement of each GE competency or CD designation.

For New Courses*

<table>
<thead>
<tr>
<th>Instructional Type: Lecture</th>
<th>Course will be offered:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading Format: Grade P/N</td>
<td>Fall Semester</td>
</tr>
<tr>
<td></td>
<td>Spring Semester</td>
</tr>
<tr>
<td></td>
<td>Summer Session</td>
</tr>
<tr>
<td>Other courses are being changed or eliminated. (Explain.)</td>
<td></td>
</tr>
</tbody>
</table>

*Course content or title is similar to courses in other departments. (Attach copy of letter of agreement with other program(s) contacted. Indicate the nature of the discussions and/or resolution of differences or potential conflicts.)

Attach paper copies of the following:

- a. Syllabus or course outline.
- b. Course's student learning outcomes.
- c. A list of resources required to offer and support this course.
- d. A description of how teaching this course will affect department staffing.
- e. If 400/500 level course, an explanation of added expectations of graduate students.
Signature Page

<table>
<thead>
<tr>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Recommended</td>
</tr>
<tr>
<td>_ Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College Curriculum Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Recommended</td>
</tr>
<tr>
<td>_ Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College Dean</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Recommended</td>
</tr>
<tr>
<td>_ Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Education Subcommittee</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ Recommended</td>
</tr>
<tr>
<td>_ Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Undergraduate Curriculum and Academic Policy Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Recommended</td>
</tr>
<tr>
<td>_ Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faculty Association Graduate Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ Recommended</td>
</tr>
<tr>
<td>_ Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graduate Dean</th>
</tr>
</thead>
<tbody>
<tr>
<td>_ Recommended</td>
</tr>
<tr>
<td>_ Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Academic Affairs Council</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Recommended</td>
</tr>
<tr>
<td>_ Not Recommended</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Vice President and Vice President for Academic Affairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Approved</td>
</tr>
<tr>
<td>_ Not Approved</td>
</tr>
<tr>
<td>Comments:</td>
</tr>
</tbody>
</table>
Biochemistry BS Major Revision Proposal

10/16/07

This proposal accommodates changes proposed by the 3 semester Physics (221,222,223) proposal, and is contingent thereon. It also corrects addition errors in the bulletin.

Current:

Required Support Courses (35-38 credits):
- BIOL 105W - General Biology I (4)
- BIOL 106 - General Biology II (4)
- BIOL 211 - Genetics (4)
- BIOL 270 - Microbiology (4)
- BIOL 479 - Molecular Biology (4)
- PHYS 211 - Principles of Physics I (4) AND
- PHYS 212 - Principles of Physics II (4) OR
- PHYS 221 - General Physics I (5) AND
- PHYS 222 - General Physics II (5)

Choose a minimum of 7 credits from the following:
- MATH 121 - Calculus I (4)
- MATH 122 - Calculus II (4)
- STAT 154 - Elementary Statistics (3)

Required for Major (Core, 41 credits):
- CHEM 201 - General Chemistry I (5)
- CHEM 202 - General Chemistry II (5)
- CHEM 305 - Analytical Chemistry (4)
- CHEM 320 - Organic Chemistry I w/ lab (5)
- CHEM 321 - Organic Chemistry II (3)
- CHEM 331 - Organic Chemistry II Lab (1)
- CHEM 440 - Physical Chemistry I (3)
- CHEM 450 - Physical Chemistry I Lab (1)
- CHEM 460 - Biochemistry I (3)
- CHEM 461 - Biochemistry II (3)
- CHEM 465 - Biochemical Techniques I (1)
- CHEM 466 - Biochemical Techniques II (2)
- CHEM 474 - Chromatography (2)
- CHEM 495 - Senior Seminar (1)
- CHEM 498 - Undergraduate Research (2)

Required Electives (Chemistry or Biology, 8 credits):
Choose a minimum of 8 credits with approval from the advisor:
- CHEM/BIOL 300/400 Elective

Total Credits: 84-87

Contingent Proposal:

Required Support Courses (35-36 credits):
- BIOL 105W - General Biology I (4)
- BIOL 106 - General Biology II (4)
- BIOL 211 - Genetics (4)
- BIOL 270 - Microbiology (4)
- BIOL 479 - Molecular Biology (4)
- PHYS 211 - Principles of Physics I (4) AND
- PHYS 212 - Principles of Physics II (4) OR
- PHYS 221 - General Physics I (4) AND
- PHYS 223 - General Physics III (3) AND
- PHYS 233 - General Physics III Lab (1)

Choose a minimum of 7 credits from the following:
- MATH 121 - Calculus I (4)
- MATH 122 - Calculus II (4)
- STAT 154 - Elementary Statistics (3)

Required for Major (Core, 41 credits):
- CHEM 201 - General Chemistry I (5)
- CHEM 202 - General Chemistry II (5)
- CHEM 305 - Analytical Chemistry (4)
- CHEM 320 - Organic Chemistry I w/ lab (5)
- CHEM 321 - Organic Chemistry II (3)
- CHEM 331 - Organic Chemistry II Lab (1)
- CHEM 440 - Physical Chemistry I (3)
- CHEM 450 - Physical Chemistry I Lab (1)
- CHEM 460 - Biochemistry I (3)
- CHEM 461 - Biochemistry II (3)
- CHEM 465 - Biochemical Techniques I (1)
- CHEM 466 - Biochemical Techniques II (2)
- CHEM 474 - Chromatography (2)
- CHEM 495 - Senior Seminar (1)
- CHEM 498 - Undergraduate Research (2)

Required Electives (Chemistry or Biology, 8 credits):
Choose a minimum of 8 credits with approval from the advisor:
- CHEM/BIOL 300/400 Elective

Total Credits: 84 - 85
Dept of Chemistry and Geology
Assessment Plan For Biochemistry BS

<table>
<thead>
<tr>
<th>Student Learning Outcomes (performance, knowledge, attitudes)</th>
<th>Related Univ. Goals</th>
<th>Related College Goals</th>
<th>Method(s) of Assessment (What is the assessment?)</th>
<th>Who Assessed (Students from what courses - population)</th>
<th>When Assessed (dates)</th>
<th>Standard of Mastery/Criterion of Achievement</th>
<th>What is Hoped to Be Learned?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Students will demonstrate their knowledge of the basic principles of chemistry (kinetics, thermodynamics, quantum mechanics and equilibria) and molecular biology and apply these to biochemically relevant problems.</td>
<td>MSUM 2</td>
<td>CSET 1, 2, 3, 4, 5, 6, 14, 16</td>
<td>in class problems homework problems examinations laboratory experiments and reports use of ACS generalized exams</td>
<td>kinetics: students enrolled in chem 202, 320, 321, 460, 461, 465, 466. thermo: students enrolled in chem 201, 202, 360, 440, 450, 460, 461. quantum: students enrolled in chem 201. equilibria: students enrolled in chem 201, 202, 305, 440, 450, 460, 461.</td>
<td>kinetics 07-08 09-10 thermo 06-07 08-09 quantum 07-08 09-10 equilib 06-07 08-09</td>
<td>mastery standards are based on course level. 2xx level: ave score on ACS standardized gen chemistry exam is statistically same as national ave. 3xx -4xx level: score on homework probs and exams average 70%, lab experiments and reports average 75%</td>
<td>a. if students are able to use their knowledge from prerequisite courses to build on in upper division courses. b. if our students can apply fundamentals to different situations. c. if students are able to identify the common themes in the various courses. d. how well our students retain and use their knowledge compared to other programs.</td>
</tr>
<tr>
<td>2. Students will demonstrate their understanding of the biochemistry’s use of numbers by applying their knowledge to make quantifiable comparisons, to report data and to determine uncertainty and error.</td>
<td>MSUM 2</td>
<td>CSET 1, 2, 3, 6, 14, 16</td>
<td>in class problems homework problems examinations laboratory experiments and reports use of ACS generalized exams</td>
<td>students enrolled in chem 201, 202, 305, 320, 321, 331, 440, 460, 461, 465, 466, 474.</td>
<td>every other year 04-05 06-07</td>
<td>mastery standards are based on course level. 2xx level: ave score on ACS standardized gen chemistry exam is statistically same as national ave. 3xx -4xx level: score on homework probs and exams average 70%, lab experiments and reports average 75%, ave score on ACS standardized organic exam is statistically same as national ave.</td>
<td>a. if students are able to use their knowledge from prerequisite courses to build on in upper division courses. b. if our students are able to quantify basic relationships in our courses and laboratories. c. if our students understand the importance of data collection, the proper recording of and reporting of data.</td>
</tr>
<tr>
<td>Student Learning Outcomes (performance, knowledge, attitudes)</td>
<td>Related Univ. Goals</td>
<td>Related College Goals</td>
<td>Method(s) of Assessment (What is the assessment?)</td>
<td>Who Assessed (Students from what courses - population)</td>
<td>When Assessed (dates)</td>
<td>Standard of Mastery/ Criterion of Achievement</td>
<td>What Is Hoped to Be Learned?</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>----------------------</td>
<td>--</td>
<td>--</td>
<td>-------------------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>3. Students will demonstrate their understanding of descriptive chemistry (physical properties, bonding, reactivity patterns, redox, and characterization) by applying these ideas to relevant problems.</td>
<td>MSUM 2</td>
<td>CSET 1, 2, 3, 4, 5, 6, 14, 16</td>
<td>in class problems homework problems examinations laboratory experiments and reports use of ACS generalized exams</td>
<td>students enrolled in chem 201, 202, 320, 321, 331, 440, 460, 461.</td>
<td>every other year 05-06 07-08</td>
<td>mastery standards are based on course level. 2xx level: score on ACS standardized general chemistry exam is statistically same as national ave. 3xx - 4xx level: score on homework probs and examinations average 70%, lab experiments and reports average 75%, score on ACS standardized organic exam is statistically same as national ave.</td>
<td>a. if students are able to use their knowledge from prerequisite courses to build on in upper division courses. b. if students are able to identify the common themes in the various courses. c. how well our students retain and use their knowledge compared to other programs.</td>
</tr>
<tr>
<td>4. Students will demonstrate their communication skills by reading scientific works and utilizing appropriate terminology in effective written, oral and pictorial presentations.</td>
<td>MSUM 1, 2, 6</td>
<td>CSET 1, 2, 3, 4, 5, 6, 9, 14, 16</td>
<td>in class discussions examinations homework problems laboratory reports writing projects and critiques posters oral presentations alumni assessment</td>
<td>students enrolled in chem 201, 202, 305, 320, 321, 331, 440, 460, 461, 465, 466, 495.</td>
<td>every third year 06-07</td>
<td>mastery standards are based on course level. 2xx level: scores on writing assignments ave 70% 3xx level: scores on written lab reports ave 75 %, scores on writing assignments ave 70 % 381: grant proposals average 75 % on rubric 4xx level: scores on written lab reports ave 75 %, scores on writing assignments ave 70 % 495: all students present oral and poster presentations with a passing grade.</td>
<td>a. if our students are able to communicate effectively as chemists. b. if spreading writing out among various courses is effective. c. how well our students can use these skills after graduation.</td>
</tr>
<tr>
<td>Student Learning Outcomes (performance, knowledge, attitudes)</td>
<td>Related Univ. Goals</td>
<td>Related College Goals</td>
<td>Method(s) of Assessment (What is the assessment?)</td>
<td>Who Assessed (Students from what courses - population)</td>
<td>When Assessed (dates)</td>
<td>Standard of Mastery/ Criterion of Achievement</td>
<td>What Is Hoped to Be Learned?</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td>-------------------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>5. Students will demonstrate their laboratory skills by properly conducting various laboratory procedures, instrumental techniques and exhibiting a professional laboratory presence.</td>
<td>MSUM 1, 2, 5 CSET 1, 2, 3, 5, 6, 14, 16</td>
<td>laboratory reports team laboratory projects critical reviews alumni assessment</td>
<td>students enrolled in chem 201, 202, 305, 320, 331, 441, 465, 466, 474, 498.</td>
<td>every other year</td>
<td>mastery standards are based on course level. 2xx level: scores on lab reports ave 80 % 3xx level: scores on written lab reports rubrics for technique ave 80 %, 4xx level: scores on written lab reports rubrics for technique ave 80 %.</td>
<td>a. if we incorporate enough instrument use throughout the program. b. how well our students can use these skills after graduation.</td>
<td></td>
</tr>
<tr>
<td>6. Students will demonstrate an understanding of the use of technology in the biochemical fields through appropriate use of databases, search engines, modeling/computational software, spreadsheet software, and computer interfaced instrumentation.</td>
<td>MSUM 2, 5, 6 CSET 1, 2, 3, 4, 5, 6, 9, 14, 16</td>
<td>writing projects poster presentations oral presentations laboratory reports team laboratory projects critical reviews alumni assessment</td>
<td>students enrolled in chem 201, 202, 305, 320, 331, 441, 460, 461, 465, 466, 474, 495, 498.</td>
<td>every other year</td>
<td>mastery standards are based on course level. 2xx level: scores on spreadsheet projects ave 75 % 3xx level: scores on lab report rubrics for data analysis ave 80 %, 4xx level: scores on lab report rubrics for instrument driven exps or computational exps ave 75 %.</td>
<td>a. if our students are able to use technology effectively. b. if students are able to apply information learned by laboratory technology to the basic principles. c. how well our students can use these skills after graduation.</td>
<td></td>
</tr>
</tbody>
</table>

The biochemistry BS also requires courses from biology to build the molecular biology knowledge. These courses include: BIOL 105, 106, 211, 270 and 479. Assessment of whether biochemistry students are building the knowledge base for their programs would occur in assessment materials used in CHEM 460, 461, 465 and 466.

*What will department or program do with results of information? This information will be used to review and determine whether the department is meeting accreditation needs, student needs and professional opportunity needs. If necessary, we will make adjustments to teaching methods, emphases or curriculum to maintain our quality.
Biochemistry BS Major Revision Proposal

10/16/07

This proposal accommodates changes proposed by the 3 semester Physics (221,222,223) proposal, and is contingent thereon.

Current:

Required Support Courses (35 - 38 credits):
- BIOL 105W General Biology I (4)
- BIOL 106 General Biology II (4)
- BIOL 211 Genetics (4)
- BIOL 270 Microbiology (4)
- BIOL 479 Molecular Biology (4)
- PHYS 211 Principles of Physics I (4) AND
- PHYS 212 Principles of Physics II (4) OR
- PHYS 221 General Physics I (5) AND
- PHYS 222 General Physics II (5)

Choose a minimum of 7 credits from the following:
- MATH 121 Calculus I (4)
- MATH 122 Calculus II (4)
- STAT 154 Elementary Statistics (3)

Required for Major (Core, 41 credits):
- CHEM 201 General Chemistry I (5)
- CHEM 202 General Chemistry II (5)
- CHEM 305 Analytical Chemistry (4)
- CHEM 320 Organic Chemistry I w/ lab (5)
- CHEM 321 Organic Chemistry II (3)
- CHEM 331 Organic Chemistry II Lab (1)
- CHEM 440 Physical Chemistry I (3)
- CHEM 450 Physical Chemistry I Lab (1)
- CHEM 460 Biochemistry I (3)
- CHEM 461 Biochemistry II (3)
- CHEM 465 Biochemical Techniques I (1)
- CHEM 466 Biochemical Techniques II (1)
- CHEM 474 Chromatography (2)
- CHEM 495 Senior Seminar (1)
- CHEM 498 Undergraduate Research (2)

Required Electives (Chemistry or Biology, 8 credits):
Choose a minimum of 8 credits with approval from the advisor:
- CHEM/BIOL 300/400 Elective

Total Credits: 83

Contingent Proposal:

Required Support Courses (35-36 credits):
- BIOL 105W General Biology I (4)
- BIOL 106 General Biology II (4)
- BIOL 211 Genetics (4)
- BIOL 270 Microbiology (4)
- BIOL 479 Molecular Biology (4)
- PHYS 211 Principles of Physics I (4) AND
- PHYS 212 Principles of Physics II (4) OR
- PHYS 221 General Physics I (4) AND
- PHYS 223 General Physics III (3) AND
- PHYS 233 General Physics III Lab (1)

Choose a minimum of 7 credits from the following:
- MATH 121 Calculus I (4)
- MATH 122 Calculus II (4)
- STAT 154 Elementary Statistics (3)

Required for Major (Core, 41 credits):
- CHEM 201 General Chemistry I (5)
- CHEM 202 General Chemistry II (5)
- CHEM 305 Analytical Chemistry (4)
- CHEM 320 Organic Chemistry I w/ lab (5)
- CHEM 321 Organic Chemistry II (3)
- CHEM 331 Organic Chemistry II Lab (1)
- CHEM 440 Physical Chemistry I (3)
- CHEM 450 Physical Chemistry I Lab (1)
- CHEM 460 Biochemistry I (3)
- CHEM 461 Biochemistry II (3)
- CHEM 465 Biochemical Techniques I (1)
- CHEM 466 Biochemical Techniques II (1)
- CHEM 474 Chromatography (2)
- CHEM 495 Senior Seminar (1)
- CHEM 498 Undergraduate Research (2)

Required Electives (Chemistry or Biology, 8 credits):
Choose a minimum of 8 credits with approval from the advisor:
- CHEM/BIOL 300/400 Elective

Total Credits: 84 - 85
Department of Chemistry and Geology
Minutes
Thursday, April 19, 2007

Present: Boyd, Carrison, Groh, Hadley, Losh, Lusch, Quirk Dorr, Rambo, Rife, Salerno, Swart, Thoemke, Vorlcek

Minutes: Minutes of April 12, 2007 (Pribyl) were approved

Announcements:
1. Distinguished Alumni Jena Thompson, ('96) will be on campus tomorrow - Friday, April 20
2. The deadline to submit Student Learning Outcomes and Assessment Data to the Assessment Committee for the 2006-2007 report is Monday, April 23 at 5 pm.

Physics Course Proposal Response: The departmental response to the physics course proposal was distributed. After discussion, revisions were recommended. The response was approved as amended and will be forwarded.

3M Equipment: The equipment that 3M is considering donating was discussed. A request was made for faculty that is interested in traveling to 3M to notify Dr. Groh soon.

Fixed Term Sabbatical Replacement Search: The timeline was discussed in regard to phone interviews and on campus interviews.

Teaching Schedule Draft: The draft was distributed and discussed.

Committee Assignments: Committee suggestions have been received. Next week the committee assignments will be discussed in detail.

Goals for 2007 – 2008: The department will formulate a draft for the 2007-2008 departmental goals. The draft will be modified in the fall. A committee may be assigned to assist the department in meeting areas that may be identified as areas of improvement.

Submitted

Danaë R. Quirk Dorr

Approved, April 26, 2007