Computer Science
College of Science, Engineering & Technology
Department of Computer Science
273 Wissink Hall • 507-389-2968
Web site: www.cset.mnsu.edu/cs

Chair: David Haglin
Rebecca Bates, Steven Case, David Haglin, Dean Kelley, Hamed Sallam, Julio Sanchez

Bachelor’s degree programs offered by the Department of Computer Science prepare graduates for positions in computer-related fields as well as advanced post-graduate study. Computer science is a field that spans a wide range of topics from theoretical and algorithmic foundations to cutting-edge developments in robotics, computer vision, computational linguistics, intelligent systems, and bioinformatics. The department offers a major and minor in Computer Science. Admission to the Major is granted by the department. Admission to the Major is required before the student is permitted to take 300- and 400-level courses. Requirements are:
- A minimum of 32 earned semester credits
- Completion of MATH 121 with a grade of “C” or better
- Completion of MATH 101 with a grade of “C” or better
- Completion of CS 110 with a grade of “B” or better
- Completion of CS 111, CS 210, and CS 220 with a grade of “C” or better and a GPA of 2.5 in these courses (or their equivalents).

COMPUTER SCIENCE BS
Required General Education (7 credits):
ENG 101 Composition (4)
SPEE 100 Fundamentals of Speech Communication (3)

Required Support Courses (7 credits):
ENG 271 Technical Communication (4)

Choose one of the following Speech courses:
SPEE 101, SPEE 102, SPEE 202, SPEE 203, SPEE 315, SPEE 325, SPEE 333, or SPEE 403.

Required for Major (Core, 71 credits):
CS 110 Computer Science I (4)
CS 111 Computer Science II (4)
CS 210 Data Structures (4)
EE 106 Introduction to Electrical/Computer Engineering 1 (3)
CS 220 Machine Structures and Programming (3)
CS 300 Large-Scale Software Development (4)
CS 310 Algorithm Analysis (3)
CS 320 Computer Architecture (3)
CS 340 Concepts of Database Management Systems (3)
CS 350 Network Architectures (3)
CS 370 Concepts of Programming Language (3)
CS 380 Analysis and Design of Software Systems (3)
CS 410 Formal Languages/Abstract Machines (3)
CS 460 Operating Systems (3)
CS 495 Computer Science Seminar (1)
MATH 121 Calculus I (4)
MATH 122 Calculus II (4)
MATH 247 Linear Algebra I (4)
STAT 354 Concepts of Probability and Statistics (3)
MATH 375 Introduction to Discrete Mathematics (4)
Capstone Experience (4 credits):
CS 490 Senior Capstone (4)
CS 497 Internship (1-4)
CS 498 Senior Thesis (4)

Required Electives (CS, 9 credits)*:
Choose an additional nine credits of coursework from the following courses:
CS 230 Intelligent Systems (4)

Required Electives (Science, 12 credits):
Choose one of the following sequences:
BIOL 105W General Biology I (4)*
BIOL 106 General Biology II (4) OR
CHEM 201 General Chemistry I (5)*
CHEM 202 General Chemistry II (5) OR
GEOL 121 Physical Geology (4)*
GEOL 122 Earth History (4)* OR
PHYS 221 General Physics I (5)*
PHYS 222 General Physics II (5) AND

Any class numbered 200 or above in Astronomy, Biology, Chemistry, Geology, or Physics or one class from another sequence listed above.

* May be used to fulfill General Education requirements.
Required Minor: Yes. Any. Note that the Mathematics requirements specified above fulfill the requirements for a mathematics minor.

COMPUTER SCIENCE MINOR
Required for Minor (Core, 11 credits):
CS 110 Computer Science I (4)
CS 111 Computer Science II (4)
EE 106 Introduction to Electrical/Computer Engineering I (3)

Choose three of the following courses:
CS 210 Data Structures (4)
CS 220 Machine Structures and Programming (3)
CS 310 Algorithm Analysis (3)
CS 320 Computer Architecture (3)
CS 350 Network Architectures (3)
CS 370 Concepts of Programming Languages (3)
CS 380 Analysis and Design of Software Systems (3)
CS 420 Advanced Computer Architecture (3)
CS 452 Network Protocol Internals (3)
CS 460 Operating Systems (3)
CS 470 Compilers (3)

For a hardware emphasis, students should choose CS 220, CS 320, and CS 420. For a networking emphasis, students should choose CS 210, CS 350, and CS 452.

POLICIES/INFORMATION

GPA Policy. A GPA of 2.5 or higher in courses required for a major or minor in the Department of Computer Science is required for graduation. This GPA requirement is calculated and must be maintained for each of the following areas: 1) for the combined Required General Education and Required Support Courses, or their substitutions, if any; 2) for the Required for Major and Required Electives courses. Refer to the College regarding required advising for students on academic probation.

Grading Policy. All coursework applied towards the major or minor, including required general education and support courses, must be taken for a letter grade

2007-2008 Undergraduate Bulletin
Investigates efficient data structuring techniques to support a variety of operations.

In addition, a minimum grade of C is required for all prerequisite courses. Grades of "D" are not accepted by the department. Any student who receives a "D" or "F" in a CS class, or who drops a CS class after the first two weeks of the semester, will have a hold for CS classes put on his/her registration.

To have the hold released, the student must meet with his/her advisor and present the advisor with an appeal form. This form will be available from the Office of Computer Science (273 Wissink Hall).

Incomplete Policy. An incomplete grade for a course will generally be given only under two conditions. The first condition is illness — a doctor’s written recommendation must be supplied. The second condition arises when a death in the student’s family has caused the student to be away from the campus for an extended period of time. The student must have a satisfactory grade ("C" or better) in the course at the time of the onset of the condition.

Residency. At least 50 percent of the computer and information sciences credits required for a major or minor from this department must be earned at Minnesota State Mankato.

COURSE DESCRIPTIONS

CS 110 (4) Computer Science I
Students will learn programming skills in object-oriented C++. Students will design algorithms and learn how to write, compile, run and debug programs that include selection and repetition structures, functions, and arrays. Study skills and professional development will be addressed.
Pre: MATH 112 (College Algebra)
Fall, Spring

CS 111 (4) Computer Science II
Continues the exploration of introductory Computer Science begun in CS 110. Focus is on developing basic knowledge of algorithms, programming skills and problem solving techniques. Topics include recursion, sorting, linked lists, stacks and queues.
Pre: MATH 115 or MATH 113, and CS 110
Fall, Spring

CS 171 (2) Introduction to C++ Programming
This course provides an introduction to programming using C++. Emphasis on structured programming concepts, with a brief discussion of object-oriented programming. Control structures, expressions, input/output, arrays and functions.
Pre: MATH 113 or MATH 115
Fall, Spring

CS 209 (2) C++ for Java Programmers
C++ syntax for students who already know Java. Specific topics: data types, operators, functions, arrays, string operations, pointers, structures, classes, constructors, destructors, pointers as class members, static classes, "this" pointer, operator functions, data type conversions, inheritance, polymorphism, and dynamic binding.
Pre: Consent
Variable

CS 210 (4) Data Structures
Investigates efficient data structuring techniques to support a variety of operations in different problem scenarios. Topics include binary trees, binary search trees, multitype search trees, hashing and hash tables, priority queues, and algorithm analysis for best, worst and average cases.
Pre: CS 111 and MATH 121
Fall, Spring

CS 220 (3) Machine Structures and Programming
This course introduces students to assembly language programming and basic machine structures. Topics include number systems; basic central processing unit (CPU) organization, instruction formats, addressing modes and their use with a variety of data structures; and parameter passing techniques.
Pre: CS 110 and EE 106
Fall, Spring

CS 230 (4) Introduction to Intelligent Systems
Fundamentals of data mining and knowledge discovery. Methods include decision tree algorithms, association rule generators, neural networks, and web-based mining. Rule-based systems and intelligent agents are introduced. Students learn how to apply data-mining tools to real-world problems.
Pre: CS 110
Fall

CS 293 (1) MAX Scholar Seminar
This class provides MAX scholars with an opportunity to explore a set of topics related to achieving success in academic, professional and personal realms. Speakers will include faculty, graduate students, visiting researchers and industry members as well as student participants.
Pre: Recipient of a MAX scholarship or instructor consent
Fall, Spring

CS 295 (1) Computer Science Seminar
A team-based capstone experience for the mid-point of the CS program. Students are introduced to principles and methodologies of large-scale software development and engineering by working on a full life-cycle software project solving a substantial problem using multiple CS concepts.
Pre: CS 210 and CS 220
Fall

CS 300 (4) Large-Scale Software Development
A team-based capstone experience for the mid-point of the CS program. Students are introduced to principles and methodologies of large-scale software development and engineering by working on a full life-cycle software project solving a substantial problem using multiple CS concepts.
Pre: CS 210 and CS 220
Spring

CS 310 (3) Algorithm Analysis
Algorithm design and analysis is central to much of computer science. This course exposes students to fundamental algorithm design and analysis techniques. Topics include many of the basic topics areas of computer science: searching, sorting, numeric computation, data representation, communication.
Pre: CS 210
Fall

CS 320 (3) Computer Architecture
This course presents historical and current concepts and implementations of computer organization. Topics include instruction set design, digital storage, performance metrics, processor datapath and control, pipelining, memory hierarchy, buses and I/O interfacing, and parallel processors.
Pre: CS 111 and CS 220, or EE 234 and EE 334
Spring

CS 340 (3) Concepts of Database Management Systems
This course covers the fundamentals of database management focusing on the relational data model. Topics include database organization, file organization, query processing, concurrency control, recovery, data integrity, optimization and view implementation.
Pre: CS 210 and CS 320
Fall

CS 350 (3) Network Architectures
An introduction to data communications and networks. The field encompasses local area networks, wide area networks, and wireless communication. Topics
include digital signals, transmission techniques, error detection and correction, OSI model, TCP/IP model, network topologies, network protocols, and communications hardware.

Pre: CS 210 and CS 320
Spring

CS 360 (3) Systems Programming
This course focuses on machine level I/O and operating system file processing. Structure of systems programs including assemblers, linkers, and object-oriented utilities and interfaces. Students will gain experience in writing utility programs and extensions to an operating system.

Pre: CS 111 or EE 107, and CS 320
Fall

CS 361 (3) Windows Programming
This course introduces the student to Windows programming in C++ using the Application Programming Interface. Windows programs are created in a visual development environment which includes editing and code generating facilities. Hands-on programming skills are developed in the lab.

Pre: CS 210
Variable

CS 370 (3) Concepts of Programming Languages
Fundamental concepts of programming languages, including principles of language design, language constructs, and comparison of major languages. Topics: formal methods of examining syntax and semantics of languages and lexical analysis of language components and constructs, and propositional and predicate calculi.

Pre: CS 210
Fall

CS 380 (3) Analysis and Design of Software Systems
Students are introduced to techniques used in analysis and design of software systems. Traditional techniques are reviewed and current methodologies for both object-oriented and procedural systems are studied. Standard notations used to document software requirements and designs are presented.

Pre: CS 300
Spring

CS 410 (3) Formal Languages/Abstract Machines
This course studies the theoretical underpinnings of modern computer science, focusing on three main models of computation: DFA, PDA, and Turing Machines. Students determine model capabilities and limitations: what is and is not computable by each of them.

Pre: CS 310 and MATH 375
Fall

CS 415 (3) High Performance Computing
High Performance Computing techniques used to address problems in computational science. Topics include application areas and basic concepts of parallel computing, hardware design of modern HPC platforms and parallel programming models, methods of measuring and characterizing serial and parallel performance.

Pre: CS 310, CS 350, and MATH 247
Variable

CS 420 (3) Advanced Computer Architecture
This course addresses advanced topics in computer architecture including a major emphasis on measuring and improving computer performance. Topics include advances in pipelining and analysis and optimization of storage systems and networks, multiprocessor challenges and trends.

Pre: CS 320 and MATH 375
Variable

CS 425 (3) Real-time and Embedded Systems
This course provides an overview of embedded and real-time systems including design principles, methodologies, design tools and problem solving techniques. Students design and build a real-time operation system with a microprocessor to host real-time service data processing using sensor/actuator devices.

Pre: CS 210 and CS 320
Variable

CS 430 (3) Artificial Intelligence
Basic introductory concepts and a history of the field of Artificial Intelligence (AI) are covered. Emphasis is placed on the knowledge representation and reasoning strategies used for AI problem solving. Solutions are found using the LISP programming language.

Pre: CS 210 or CS 230
Fall

CS 431 (3) Computational Linguistics
Computational linguistics topics covered include regular expressions, finite state automata, information theory, context free grammars, hidden Markov models and Viterbi algorithms. Students will work on problems within the field including parsing, machine translation, speech recognition, information extraction and parsing.

Pre: CS 210 or CS 230
Fall

CS 433 (3) Data Mining and Machine Learning
A blend of computer science, information science, and statistics for storing, accessing, modeling, and understanding large data sets. Topics include fundamental data mining algorithms: decision trees, classification, regression, association rules, statistical models, neural networks, and support vector machines.

Pre: CS 210 and STAT 354
Spring

CS 452 (3) Network Protocol Internals
As an advanced coverage of data communication, this course explores principles, protocols and performance evaluation techniques of advanced networking technologies. Topics include error detection and recovery, flow control, routing, data throughput, and performance analysis of existing and emerging Internet protocols.

Pre: CS 350 and STAT 354
Variable

CS 454 (3) Mobile and Wireless Networks
Emerging mobile and wireless data networks technologies covered include standard wireless protocols (e.g., Bluetooth, IEEE 802.11, RFID, and WAP), and development of mobile and wireless applications (e.g., J2ME, WML, Brew). Includes research, design, and implementation of a wireless, mobile application.

Pre: CS 320 and CS 350
Variable

CS 460 (3) Operating Systems: Design & Implementation
This course studies historical and current concepts and implementations of computer operating systems. Basic operating systems topics include processes, interprocess communication, interprocess synchronization, deadlock, memory allocation, segmentation, paging, resource allocation, scheduling, file systems, storage, devices, protection, security, and privacy.

Pre: CS 210 and CS 320
Spring

CS 470 (3) Compilers
This course offers an introduction to specification and implementation of modern compilers. Topics include lexical scanning, parsing, type checking, code generation and translation, optimization, and compile-time and run-time support for modern programming languages. Students build a working compiler.

Pre: CS 370
Variable

CS 480 (3) Advanced Programming Practices
This course covers advanced programming for general-purpose software development. Topics include tools and processes appropriate for employing object-oriented designs and programming within a significant software develop-
COMPUTER SCIENCE

ment environment and advanced data structures and algorithms, graphical user interfaces, and software development processes.
Pre: CS 300 and CS 380
Variable

CS 490 (4) Senior Capstone
Students gain experience working with a team to solve a substantial problem in the field of computer science using concepts that span several topic areas in computer science. Class time focuses primarily on project design and implementation.
Pre: Senior standing and successful completion of all core requirements.
Spring

CS 493 (1) MAX Scholar Seminar
This class is for MAX scholars and covers topics related to achieving success in academic, professional and personal realms. Speakers will include faculty, graduate students, visiting researchers and industry members. Students will mentor lower division scholars and do presentations.
Pre: Recipient of a MAX scholarship or instructor consent
Fall, Spring

CS 495 (1) Computer Science Seminar
Provides Computer Science majors or minors an opportunity to explore topics not normally covered in the curriculum. Speakers will include faculty, graduate students, undergraduate students admitted to the Computer Science major, visiting researchers and industry members. This class may be repeated for credit.
Prerequisite: Admitted to major
Fall, Spring

CS 496 (1–4) Selected Topics in Computer Science
Special topics not covered in other courses. May be repeated for credit on each new topic.
Pre: Consent
Variable

CS 497 (1–6) Internship
This course is designed to provide students with an opportunity to utilize their training in a real-world environment. Participants work under the guidance and direction of a full-time staff member. (At most 4 hours towards the CS major.)
Pre: Permanent admission to the CS major, CS 300, consent.

CS 498 (4) Senior Thesis
Advanced study and research required. Topic of the senior thesis determined jointly by the student and the faculty advisor.
Pre: Senior standing and consent
Fall, Spring

CS 499 (1-2) Individual Study
Problems in the field of computer science are studied on an individual basis under the guidance of a faculty mentor.
Pre: Consent
Fall, Spring