Computer Engineering Technology
College of Science, Engineering & Technology
Department of Electrical and Computer Engineering and Technology
137 Trafton Science Center S • 507-389-5747
Web site: www.cset.mnsu.edu/ecet

Chair: Bill Hudson, Ph.D.
Program Coordinator: Julio Mandojana, Ph.D.

Gale Allen, Ph.D.; Mark Dvorak, Ph.D.; Tom Hendrickson, Ph.D.; Han-Way Huang, Ph.D.; Bill Hudson, Ph.D.; Rajiv Kapadia, Ph.D.; Muhammad Khaligi, Ph.D.; Ramakrishna Nair, Ph.D., Vincent Winstead, Ph. D., P. E., Qun Zhang, Ph. D.

Computer Engineering Technology is a technological field requiring the application of scientific and engineering knowledge and methods, combined with technical skills, in support of computer activities. A computer engineering technologist is a person who is knowledgeable in computer hardware and software theory and design and who can apply them to a variety of industrial and consumer problems. Computers, controls/automation, robotics, instrumentation, and communications are just a few fields open to computer engineering technologists.

The program strives to prepare students for successful entry into the technical workforce. This means that the curriculum prepares students to:

1. Apply knowledge of mathematics, science, and computer engineering to problems.
2. Design and construct experiments and analyze and interpret the resulting data.
3. Design systems, components, or processes to meet specified needs.
4. Function effectively in teams.
5. Identify, formulate, and solve problems in computer engineering technology.
6. Understand their professional and ethical responsibilities.
7. Communicate effectively.

The Educational Objectives for our Bachelors Degree in Computer Engineering Technology program area:

1. Function as responsible members of society with an awareness of the social, ethical, and economic ramifications of their work.
2. Become successful practitioners in computer engineering technology and other diverse careers.
3. Pursue continuing and life-long learning opportunities.
4. Provide necessary skills to advance technically and/or managerially.
5. Provide foundational education that allows for personal growth and flexibility through their career.

Our metrics for determining success in meeting these objectives will include:

1. Assessment of societal, economic awareness, and ethical performance of our graduates by the graduate and employer.
2. Monitoring of the success of our graduates in the work force.
3. Assessment of continuing and life-long learning by the graduate (and their employer as applicable).
4. Ongoing contact with graduates to determine career paths and challenges confronted.

Accreditation. The Computer Engineering Technology program is not yet accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology.

Admission to Major is granted by the department. Minimum program admission requirements are:

- a minimum of 32 earned semester credit hours.
- a minimum cumulative GPA of 2.00 (“C”).

Contact the department for application procedures.

Students who do not have the required background for MATH 115 may have to take additional preparatory coursework as well. Consult with your major adviser to plan your general education and major requirements.

All students must complete a minimum of 12 semester credits of mathematics starting with Precalculus math and a minimum of 24 semester credits of mathematics and science courses.

COMPUTER ENGINEERING TECHNOLOGY BS

Required for Major:

(Communication, Mathematics and Science, 38 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 104 Introduction to Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ENG 101 Composition</td>
<td>4</td>
</tr>
<tr>
<td>MATH 115 Precalculus Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>MATH 121 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 127 Calculus II for Engineering Technology: Integration</td>
<td>4</td>
</tr>
<tr>
<td>MATH 180 Math for Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>MET 427 Quality Management Systems</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 211 Principles of Physics I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 212 Principles of Physics II</td>
<td>4</td>
</tr>
<tr>
<td>SPEE 102 Public Speaking</td>
<td>4</td>
</tr>
</tbody>
</table>

Choose one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 154 Elementary Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 354 Concepts of Probability and Statistics</td>
<td>3</td>
</tr>
</tbody>
</table>

Required for Major (EET, 66 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EET 113 DC Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EET 114 AC Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EET 141 Integrated Computer Technology I</td>
<td>4</td>
</tr>
<tr>
<td>EET 142 Integrated Computer Technology II</td>
<td>4</td>
</tr>
<tr>
<td>EET 143 Integrated Computer Technology III</td>
<td>4</td>
</tr>
<tr>
<td>EET 221 Electronic CAD</td>
<td>3</td>
</tr>
<tr>
<td>EET 222 Electronics I</td>
<td>4</td>
</tr>
<tr>
<td>EET 223 Electronics II</td>
<td>4</td>
</tr>
<tr>
<td>EET 241 Electronic Shop Practices</td>
<td>3</td>
</tr>
<tr>
<td>EET 254 Microprocessors I</td>
<td>4</td>
</tr>
<tr>
<td>EET 310 Programming Tools</td>
<td>4</td>
</tr>
<tr>
<td>EET 456 Communications I</td>
<td>4</td>
</tr>
<tr>
<td>EET 461 Industrial Automation I</td>
<td>4</td>
</tr>
<tr>
<td>EET 462 Industrial Automation II</td>
<td>4</td>
</tr>
<tr>
<td>EET 484 Microprocessors II</td>
<td>4</td>
</tr>
<tr>
<td>EET 497* Internship</td>
<td>3</td>
</tr>
</tbody>
</table>

Choose a minimum of 5 credits from the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EET 425</td>
<td>3</td>
</tr>
<tr>
<td>EET 452</td>
<td>3</td>
</tr>
<tr>
<td>EET 455</td>
<td>3</td>
</tr>
<tr>
<td>EET 486</td>
<td>3</td>
</tr>
<tr>
<td>EET 487</td>
<td>3</td>
</tr>
</tbody>
</table>

* You may substitute one EET advanced elective for internship. Permission required.

Required Minor: None.

POLICIES/INFORMATION

GPA Policy. Students graduating with a degree in Computer Engineering Technology must have (1) completed a minimum of 20 semester credit hours of upper division EET at Minnesota State Mankato, (2) have a cumulative GPA of 2.0 or better on all upper division EET courses, and (3) have completed their senior design sequence at Minnesota State Mankato.

P/N Grading Policy. A student who majors in CET must elect the grade option for all required courses including general education courses listed by number even if offered by another department.

If the credits earned for composition, and speech courses equal less than 9 credits, either an advanced speech course or a course in English language literature must be selected as a general elective.
Transfer of credit to the CET major is subject to policies described in this bulletin for all students transferring to Minnesota State Mankato and to the following department policies:

1. All transfer students must take EET 221 if not proficient with current Minnesota State Mankato software.
2. For courses taken at technical colleges/vocational technical schools and pertinent courses taken in the military the student may receive up to 8 credits upon review of course materials, grades and written approval by the program coordinator. These credits may be used for EET 112, EET 113, and EET 114. The student may also attempt to test out of EET 114, EET 222, EET 223.
3. For courses taken at community colleges and four-year colleges, up to 25 credits may be accepted if the transcript is from an A 20 credits may be accepted. Grades of transfer credits must be "C" or better to be acceptable for substitution for required courses.

Accreditation. The Computer Engineering Technology program is not accredited by the Technology Accreditation Commission of the Accreditation Board for Engineering and Technology.

Petition to evaluate transfer credits must occur no later than the first semester the student is enrolled in or declared a major housed in the department of Electrical and Computer Engineering Technology.

Testing for course credit will be available via prior application made with the program coordinator. Students may not apply for credit by examination for an EET course in which they were previously enrolled at Minnesota State Mankato or for any EET course above EET 223.

COURSE DESCRIPTIONS

EET 116 (3) Communications-Past, Present & Future
This is an introductory course in the use of technology for communication. During the semester students will study the evolution of communications technology from early days to the present. This course will cover wireless, analog, and digital techniques including telephony, the internet, and mobile formats. The student will study theory and principles involved in the different types of communications. Modern techniques in digital communications will be discussed and demonstrated through simulation. A consumer example of digital communication will be given.
Variable
GE-13

EET 117 (3) Introduction to Digital Electronics
Hands-on experiences in the use of digital integrated circuits and logic families. Students will study logic gates, number systems, flip flops, latches, registers, computer arithmetic and memory. A self paced format with an open laboratory format.
Variable

EET 125 (3) Perspective on Technology
Historical, cultural, ethical, philosophical, developmental, and creative aspects of engineering and technology as a discipline are explored. The course also examines concepts and events leading to important innovations of recent times; microwave ovens, FAX machines, personal computers, traffic signals, and video games.
Fall
GE-6, GE-8 CD-Related

EET 141 (4) Integrated Computer Technology I
Digital circuit, logic, and C programming skills needed for electronic and computer engineering technology. Covers binary arithmetic, clock distribution, timing, TTL, CMOS, logic gates, Boolean algebra, multiplexer, counter, adder, logic simulation, C language elements, C programming techniques and use of digital test equipment. Students design and build an Arithmetic Logic Unit (ALU) from small-scale logic components and simulate each block in C.
Co: EET 113
Fall

EET 142 (4) Integrated Computer Technology II
Continues building digital circuit, logic, and C programming skills needed for electronic and computer engineering technology. Covers comparators, decoding, encoding, multiplexers, flip-flops, Schnitt Trigger, C functions, arrays, variables, recursive functions, structures, and strings. Students design, build and test a microprocessor using TTL gates and simulate each block in C.
Pre: EET 141
Spring

EET 143 (4) Integrated Computer Technology III
Sequential circuits, logic timing, clock distribution, counter, LED display, shift register, transceiver, 555 timer, 555 oscillator, D/A converter, RAM, ROM, mass memory, synchronous logic, asynchronous logic, microprocessor-interfacing, testability, and simulation.
Pre: EET 142
Fall

EET 211 (3) Electronic CAD
Drafting Principles involving use of computer electronic CAD software in laying out block diagrams, schematic diagrams, production drawings, graphical presentation of data, and printed circuit board layout and construction.
Fall

EET 222 (4) Electronics I
An introduction to semiconductor theory and circuits; includes characteristics curves, biasing techniques and small signal analysis of FETs and MOSFETs, feedback concept, BJT and FETs frequency response.
Pre: EET 114 or concurrent

2008-2009 Undergraduate Bulletin
EET 223 (4) Electronics II
An introduction to differential amplifier, linear and nonlinear operational amplifiers, power amplifiers, linear digital ICs, oscillators, power supplies, D/A, A/D conversion, four layered devices and their applications.
Pre: EET 222
Spring

EET 241 (2) Electronic Shop Practices
An introduction to tools, equipment, materials, and techniques used in fabrication of electronic projects and printed circuit boards.
Pre: EET 222 and EET 221
Spring

EET 254 (4) Microprocessors I
A study of microcomputer hardware and software fundamentals, the instruction set and the addressing modes of a microprocessor/microcontroller, assembly programming, basic I/O concepts, parallel I/O methods, asynchronous serial I/O methods, synchronous serial I/O methods, A/D conversion, and timer applications.
Pre: EET 143, EET 222 and EET 254
Spring

EET 298 (1-4) Topics
Varied topics in Electronic and Computer Engineering Technology. May be repeated as topics change.
Pre: to be determined by course topic

EET 310 (4) Programming Tools
Several programming tools and their use in creating electronic hardware systems are covered in this course. Creating special-purpose hardware using numerical analysis programs written in C. Creating hardware utilizing Visual applications written in C. Use of scripting languages in hardware applications. Using Excel for input-output functions.
Pre: EET 143, EET 222 and EET 254

EET 340 (4) Programmable Hardware Technology
Create working programmable hardware using FPGA, GAL and other logic technology. Use industry standard tools such as Verilog, Xilinx, Orcad and Multisim along with development kits and extension boards to implement programmable systems. Interface LED displays, switches and I/O devices with programmable logic to create processing systems. Evolution of programmable logic and analog circuits.
Pre: EET 143
Spring

EET 355 (3) Electrical Power Systems
Electrical power and magnetic circuit concepts, transformers, generators and motors (DC, synchronous, induction), special purpose motors, power-electronic motor drivers, prime movers/alternatives, generation, transmission/distribution, system stability/protection.
Pre: EET 114
Fall

EET 393 (1-4) Practicum
Elective credit for approved experience in off-campus work related to EET major.
Pre: Permission required.
Fall, Spring

EET 425 (3) Advanced Digital Design
A study of multiple-output switching functions optimization, flip-flops, registers and counters, programmable logic devices, synchronous sequential circuit design and synthesis, pulse mode and fundamental model sequential circuit design, test methods, and test vector generation.
Variable

EET 430 (4) Computer Networking I
An introduction to the basic foundations of computer networking. The course will encompass telecommunications, local area networks, wide area networks and wireless communication. Topics covered include OSI model, the TCP/IP MODEL, different network topologies and associated hardware, error detection and correction, protocols, and security.
Pre: IT 214 or consent of instructor.
Fall

EET 431 (4) Computer Networking II
Pre: EET 430
Spring

EET 441 (4) Embedded Systems
Design and prototyping of embedded systems including hardware and software components. A variety of hardware, software and displays will be used depending on the embedded system requirements. Issues related to hardware and software specifications will be studied as well as appropriate documentation standards.
Pre: EET 254
Spring

EET 452 (3) Operational Amplifier Applications
Operational amplifier circuits utilized in filters, sensors, comparators, voltage regulators, device testing, measurement systems, multipliers, phase-locked loops, and A/D converters. Differential amplifier basics. Linear integrated circuit processing.
Pre: EET 223 and MATH 121
Fall

EET 455 (3) Advanced Power Electronics
The half-wave rectifier with power loads, power semiconductor switches, thyristor states, controlled rectifiers, commutating circuits, AC voltage controllers (poly and single phase), motor controllers, DC-DC converters, and inverters.
Pre: EET 223 and EET 355
Variable

EET 456 (4) Communications I
Communications principles and systems. Practical engineering aspects involved in modulation-demodulation, receivers, transmitters and filters. Also included are radiation and antennas, guided waves, microwaves, and microwave systems.
Pre: EET 222 or Consent
Spring

EET 458 (1) Advanced Instrumentation
Experiences with electronic equipment and instrumentation including maintenance, repair, calibration, safety and component identification.
Pre: 25 hours of EET courses, or consent
Spring

EET 461 (4) Industrial Automation I
Automation components and subsystems involving sensors, transistors, logic, amplifiers, software, microprocessors, PLCs, actuators, encoders, stages, motors, controllers, and drives. Students design, simulate, build, test and document automation systems for Capstone projects.
Pre: EET 222 and EET 254
Fall

EET 462 (4) Industrial Automation II
Continues building skills in automation components and subsystems involving sensors, transistors, logic, amplifiers, software, microprocessors, PLCs, actuators, encoders, stages, motors, controllers and drives. Students design, simulate, build, test and document automation systems for Capstone projects.
Pre: EET 461
Spring
EET 484 (4) Microprocessors II
A study of a high performance microprocessor architecture. Applications of a microprocessor for monitoring and controlling systems will be studied. Optimal utilization of a microprocessors resources will be stressed. PC programming in assembly and a high level language.
Pre: EET 254 or consent of instructor
Fall

EET 486 (3) Communications II
Pre: EET 456
Variable

EET 487 (3) RF Systems Technology
Pre: EET 456
Variable

EET 491 (1-4) In-Service

EET 492 (4) Integrated Circuit Technology
Semiconductor industry and overview of integrated circuit manufacturing, integrated circuit types, crystal growth and wafer manufacturing, physics of semiconductor materials, detail of major IC fabrication steps, process yield, semiconductor devices and integrated circuit formation, packaging, and semiconductor measurements, introduction to layout tools.
Pre: EET 223
Spring

EET 497 (1-6) Internship
Should be taken at end of junior year. Permission required. Pre: 40 hrs EET credits or written permission from program coordinator.
Fall, Spring

EET 498 (1-4) Topics
Varied topics in Electronic and Computer Engineering Technology. May be repeated as topics change.
Pre: to be determined by course topic

EET 499 (1-4) Individual Study
Fall, Spring