Biology
College of Science, Engineering & Technology
Department of Biological Sciences
242 Trafton Science Center S • 507-389-2786
Web site: www.cset.mnsu.edu/biology/

Chair: Michael Bentley, Ph.D.

Lois Anderson, M.S.; Christopher Conlin, Ph.D.; Bradley Cook, Ph.D.; Geoff Goellner, Ph.D.; Marilyn Hart, Ph.D.; Anne-Marie Hoskinson, Ph.D.; Penny Knoblich, DVM; Ph.D.; John D. Krenz, Ph.D.; Bethann Lavoie, Ph.D.; Alison Mahoney, Ph.D.; Gregg Marg, Ph.D.; Steven Mercurio, Ph.D.; Beth Proctor, Ph.D.; Christopher Ruhlman, Ph.D.; Timothy Scott, Ph.D.; Robert Sorensen, Ph.D.; Daniel Toma, Ph.D.; Edward Williams, Ph.D.; Dorothy Wrigley, Ph.D.; Peggy Stupca (Site Director, Cytogenetic Program, Mayo Clinic)

The Department of Biological Sciences offers programs for students preparing for careers in education, laboratory and field research, biotechnology, environmental sciences, clinical laboratory sciences, cytotechnology, food science technology and pre-professional programs including pre-agriculture, pre-forestry, pre-medicine, and pre-veterinary medicine.

The biology major offers a core program intended to develop a common background in biology and additional upper level courses designed to provide specialized options. Students typically take a broad based general biology major or an emphasis in one of the following: general biology, cytotechnology, ecology, human biology, microbiology, plant science, toxicology, or zoology. Programs in biotechnology, environmental sciences, food science technology and science teaching are also offered.

Admission to Major is granted by the department. Admission requirements are 32 earned semester credit hours including BIOL 105 and BIOL 106, with a grade of a “C” or better in both BIOL 105 and BIOL 106; and a minimum cumulative GPA of 2.00.

POLICIES/INFORMATION

P/N Grading Policy. All courses leading to a major or a minor in biology must be taken for letter grades. Any exception to this policy must be approved by the chairperson of the department.

Refer to the College regarding required advising for students on academic probation.

GPA Policy. In programs where not specifically noted, a minimum GPA of 2.0 must be maintained in biological sciences. A minimum GPA of 2.6 in the sciences must be maintained to meet student teaching requirements.

Several biology scholarships are available for entering freshmen and currently enrolled Minnesota State Mankato students who meet the requirements. Application deadline is March 31 of each year.

The Department of Biological Sciences offers a well-balanced summer school program. For details concerning the courses being offered consult the summer bulletin.

BIOLOGY BS

Students may elect to complete the general non-specialized biology major or select one of the alternative specialized options or emphases.

GENERAL, NON-SPECIALIZED OPTION

Required General Education courses (16-21 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 105</td>
<td>General Biology I (4)</td>
<td></td>
</tr>
<tr>
<td>CHEM 201</td>
<td>General Chemistry I (5)</td>
<td></td>
</tr>
</tbody>
</table>

Required for Major (24-27 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 106</td>
<td>General Biology II (4)</td>
<td></td>
</tr>
<tr>
<td>BIOL 211</td>
<td>Genetics (4)</td>
<td></td>
</tr>
<tr>
<td>BIOL 215</td>
<td>General Ecology (4)</td>
<td></td>
</tr>
<tr>
<td>BIOL 301</td>
<td>Evolution (2)</td>
<td></td>
</tr>
<tr>
<td>BIOL 320</td>
<td>Cell Biology (4)</td>
<td></td>
</tr>
</tbody>
</table>

Required supporting courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 202</td>
<td>General Chemistry II (5)</td>
<td></td>
</tr>
<tr>
<td>CHEM 320</td>
<td>Organic Chemistry I (5)</td>
<td></td>
</tr>
<tr>
<td>STAT 154</td>
<td>Elementary Studies (3)</td>
<td>OR</td>
</tr>
<tr>
<td>HLTH 475</td>
<td>Biostatistics (3)</td>
<td></td>
</tr>
</tbody>
</table>

Required for Major (24-27 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 106</td>
<td>General Biology II (4)</td>
<td></td>
</tr>
<tr>
<td>BIOL 211</td>
<td>Genetics (4)</td>
<td></td>
</tr>
<tr>
<td>BIOL 215</td>
<td>General Ecology (4)</td>
<td></td>
</tr>
<tr>
<td>BIOL 301</td>
<td>Evolution (2)</td>
<td></td>
</tr>
<tr>
<td>BIOL 320</td>
<td>Cell Biology (4)</td>
<td></td>
</tr>
</tbody>
</table>

Recommended supporting courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 320</td>
<td>Organic Chemistry I (5)</td>
<td></td>
</tr>
<tr>
<td>CHEM 465</td>
<td>Biochemical Techniques I (1)</td>
<td></td>
</tr>
</tbody>
</table>

Required for Major (24-27 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 106</td>
<td>General Biology II (4)</td>
<td></td>
</tr>
<tr>
<td>BIOL 211</td>
<td>Genetics (4)</td>
<td></td>
</tr>
<tr>
<td>BIOL 215</td>
<td>General Ecology (4)</td>
<td></td>
</tr>
<tr>
<td>BIOL 301</td>
<td>Evolution (2)</td>
<td></td>
</tr>
<tr>
<td>BIOL 320</td>
<td>Cell Biology (4)</td>
<td></td>
</tr>
</tbody>
</table>

Required electives: 10-13 credits from 300 or 400 level biology courses; at least 7 credits must be courses with laboratory components.

The general option requires at least 40 credits of biology courses.

Required Minor: None

CYTOTECHNOLOGY/CYT GENETICS OPTION

A cytotechnologist is an allied health professional and is involved in the microscopic study of cells for evidence of disease and cancer. Cytotechnologists are trained to accurately identify precancerous, malignant, and infectious conditions using cytological techniques. The “Pap test” (an evaluation of cells from the uterine cervix) is the best known test in this field. The four-year curriculum consists of three years spent at the university completing the required courses and the fourth year is a 32 credit internship spent in professional education. Agencies participating in the cytotechnology program include, but are not limited to: Mayo School of Health Sciences in Rochester. Admission into the fourth-year hospital clinical internship is competitive. Therefore, admission to the program does not ensure placement into the fourth-year internship. The BS degree is awarded by the university after successful completion of the internship year. Graduates are then eligible to take the certifying examination. Cytotechnologists are employed in hospital laboratories, universities, and private laboratories.

Cytogenetics is the specialized area of laboratory medicine involving the study of normal and abnormal chromosomes and their relationship to human disease. Cytogenetic technologists analyze chromosomes using tissue cultures and preparations from peripheral blood, bone marrow, amniotic fluid, products of conception, and tumor samples. Cytogenetic technologists use fluorescent-labeled DNA to detect chromosome abnormalities associated with birth defects, retardation, infertility, miscarriage, and cancers. Fluorescence In Situ Hybridization or FISH has become the most rapidly growing area in cytogenetics. The four-year curriculum consists of three years spent at the university completing the re-
required courses and the fourth year is a 32-credit internship spent in professional
education at Mayo School of Health Sciences in Rochester. Admission into the
fourth-year hospital clinical internship is competitive. Therefore, admission to
the program does not ensure placement into the fourth-year internship. The BS
degree is awarded by the university after successful completion of the internship
year. Graduates are then eligible to take the certifying examination. Cytogenetic
 technologists are employed in hospitals, clinical laboratories, research labora-
tories, and cytogenetic-related biotechnology companies. Background checks
may be required on all students admitted to Cytotecnology & Cytogenetics
internship programs.

Required for Option

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 105</td>
<td>4</td>
<td>General Biology I</td>
</tr>
<tr>
<td>BIOL 106</td>
<td>4</td>
<td>General Biology II</td>
</tr>
<tr>
<td>BIOL 211</td>
<td>4</td>
<td>Genetics</td>
</tr>
</tbody>
</table>

Required General Education (4 credits)

One class from MATH 112, MATH 113, MATH 115, or MATH 121.

Required Support Courses (18 credits) (# Highly recommended)

Choose from the following to total at least 18 credits in Chemistry:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 201</td>
<td>5</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>CHEM 202</td>
<td>5</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>CHEM 306</td>
<td>4</td>
<td>Principles of Biochemistry</td>
</tr>
</tbody>
</table>

Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 220</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 230</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 270</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 320</td>
<td>4</td>
</tr>
</tbody>
</table>

Recommended Support Courses (0 credits)

Required Courses (3-4 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 430</td>
<td>4</td>
<td>Hematology/Intro. to Immunology</td>
</tr>
<tr>
<td>BIOL 434</td>
<td>5</td>
<td>Development and Human Embryology</td>
</tr>
<tr>
<td>BIOL 435</td>
<td>4</td>
<td>Histology</td>
</tr>
<tr>
<td>BIOL 479</td>
<td>4</td>
<td>Molecular Biology</td>
</tr>
</tbody>
</table>

Highly recommended for Cytotechnology Track

Required Minor: None

Professional Education (32 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 493</td>
<td>4</td>
<td>Cytotechnology/Cytogenetics Clinical Intern. I (1-12)</td>
</tr>
<tr>
<td>BIOL 494</td>
<td>4</td>
<td>Cytotechnology/Cytogenetics Clinical Intern. II (1-12)</td>
</tr>
<tr>
<td>BIOL 495</td>
<td>4</td>
<td>Cytotechnology/Cytogenetics Clinical Intern. III (1-12)</td>
</tr>
<tr>
<td>BIOL 496</td>
<td>4</td>
<td>Cytotechnology/Cytogenetics Clinical Intern. IV (1-12)</td>
</tr>
</tbody>
</table>

Clinical internships for the Cytotechnology and Cytogenetics programs are at
Mayo School of Health Sciences in Rochester, MN. Adjunct faculty at the clinical
sites include: Jill Caudill, CT (ASCP), Michael Henry, M.D., and Peggy Stupca,
MS,CLSSp(CG). Internship sites are required by law to do background checks
on all students admitted to their programs.

ECOLOGY OPTION

Ecology is the study of relationships between organisms and their environment.
The option consists of fundamental courses in biology and related sciences, mid-
level study in genetics, evolution, and statistics, and an array of upper-division
electives that emphasize fieldwork, data analysis, and writing. Many students
collaborate with faculty in their research or conduct independent research
projects. Career titles available with this option include ecologist, naturalist,
wildlife biologist, natural resource manager, fish biologist, marine biologist,
conservational training or graduate school. For more information about the op-
tion and the ecology faculty, select “ecology” at the department page (see www.
mnsu.edu/dept/biology).

Required for Option (12 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 105</td>
<td>4</td>
<td>General Biology I</td>
</tr>
<tr>
<td>BIOL 106</td>
<td>4</td>
<td>General Biology II</td>
</tr>
<tr>
<td>BIOL 211</td>
<td>4</td>
<td>Genetics</td>
</tr>
</tbody>
</table>

Required General Education (9 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 201</td>
<td>5</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>PHYS 211</td>
<td>4</td>
<td>Principles of Physics I</td>
</tr>
</tbody>
</table>

Required Support Courses (12 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 271</td>
<td>4</td>
<td>Technical Communication</td>
</tr>
<tr>
<td>HLTH 475</td>
<td>3</td>
<td>Biostatistics</td>
</tr>
</tbody>
</table>

Core Courses (21-27 credits required)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 215</td>
<td>4</td>
<td>General Ecology</td>
</tr>
<tr>
<td>BIOL 301</td>
<td>2</td>
<td>Evolution</td>
</tr>
<tr>
<td>BIOL 408</td>
<td>4</td>
<td>Vertebrate Ecology</td>
</tr>
<tr>
<td>BIOL 412</td>
<td>4</td>
<td>Soil Ecology</td>
</tr>
<tr>
<td>BIOL 443</td>
<td>4</td>
<td>Plant Ecology</td>
</tr>
</tbody>
</table>

Highly recommended for Cytotechnology Track

Recommended Support Courses (12 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT 100</td>
<td>4</td>
<td>Introduction to Computing and Applications</td>
</tr>
<tr>
<td>MATH 121</td>
<td>4</td>
<td>Calculus I</td>
</tr>
<tr>
<td>ENG 271</td>
<td>4</td>
<td>Technical Communication</td>
</tr>
</tbody>
</table>

Elective Courses (20-28 credits)

I. Choose 2-8 credits from the following Biology courses for a total of 40 credits
of Biology:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 316</td>
<td>4</td>
<td>General Biology</td>
</tr>
<tr>
<td>BIOL 403</td>
<td>4</td>
<td>Cytotechnologist</td>
</tr>
<tr>
<td>BIOL 404</td>
<td>4</td>
<td>Cytogenetologist</td>
</tr>
<tr>
<td>BIOL 409</td>
<td>4</td>
<td>Cytology</td>
</tr>
<tr>
<td>BIOL 410</td>
<td>4</td>
<td>Cytogenetics</td>
</tr>
</tbody>
</table>

II. Choose at least 18 credits from non-Biology courses in consultation with
your advisor.

Required Minor: None

HUMAN BIOLOGY OPTIONS

The purpose of this option is to prepare the student for a career in biomedicine.
The option fulfills the science course requirements for most medical, osteopathic,
dental, and chiropractic schools as well as the science course requirements for
graduate education in biomedicine. If you are interested in applying to a specific
medical school, please contact that school for their spe ci-fic requirements.

Required for Option (12 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 105</td>
<td>4</td>
<td>General Biology I</td>
</tr>
<tr>
<td>BIOL 106</td>
<td>4</td>
<td>General Biology II</td>
</tr>
<tr>
<td>BIOL 211</td>
<td>4</td>
<td>Genetics</td>
</tr>
</tbody>
</table>

Required General Education (9-10 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 201</td>
<td>5</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>PHYS 211</td>
<td>4</td>
<td>Principles of Physics I</td>
</tr>
</tbody>
</table>

2010-2011 Undergraduate Bulletin
Required Support Courses (25-27 credits)
CHEM 202 General Chemistry II (5)
CHEM 305 Analytical Chemistry (4)
CHEM 320 Organic Chemistry I (5)
CHEM 360 Principles of Biochemistry (4)
(Choose one)
MATH 121 Calculus I (4)
MATH 354 Concepts of Probability and Statistics (3)
HLTH 475 Biostatistics (3)
(Choose one to complete one year of a Physics sequence)
PHYS 212 Principles of Physics II (4)
PHYS 222 General Physics II (3)
Core Courses (16 credits)
BIOL 220 Human Anatomy (4)
BIOL 230 Human Physiology (4)
BIOL 320 Cell Biology (4)
(Choose one)
BIOL 270 Microbiology (4)
BIOL 217 Plant Science (4)
Recommended Support Courses (3 credits)
CHEM 321 Organic Chemistry II (3)
CHEM 331 Organic Chemistry II lab (1)
Electives Courses
Choose electives from the following to total 40 credits in Biology.
(Choose at least one)
BIOL 316 BIOL 420 BIOL 430 BIOL 433 BIOL 435 BIOL 452
BIOL 474 BIOL 475 BIOL 479 BIOL 497# BIOL 499#
Choose a maximum of 4 credits from these courses
(Choose additional credits from)
BIOL 324 BIOL 410 BIOL 417 BIOL 418 BIOL 434
BIOL 438 BIOL 474 BIOL 460 BIOL 466
Required Minor: None.

MICROBIOLOGY OPTION
Microorganisms impact every area of life. The option exposes students to a variety of topics in microbiology and teaches numerous skills needed to work with microorganisms. Training in microbiology prepares students for employment in industry (e.g., quality assurance, vaccine production) and government (e.g., laboratory technicians). Currently, employment opportunities abound in applied areas of microbiology such as biological products/pharmaceuticals, food processing, environmental assessment. It also prepares a student for continuing education in microbiology, immunology, and cell and molecular biology. Students may elect to work on research projects with faculty who work in the areas of food microbiology, immunology, microbial genetics, and molecular biology.

Required for Option (12 credits)
BIOL 105 General Biology I (4)
BIOL 106 General Biology II (4)
BIOL 211 Genetics (4)
Required General Education (8-9 credits) (include Math requirements)
CHEM 201 General Chemistry I (5)
MATH 112 or any higher numbered math course listed in General Education Goal Area 4
Required Support Courses (14 credits)
CHEM 202 General Chemistry II (5)
CHEM 305 Analytical Chemistry (4)
CHEM 320 Organic Chemistry I (5)
Core Courses (8 credits)
BIOL 270 Microbiology (4)

(Choose one from the following)
BIOL 215 General Ecology (4)
BIOL 217 Plant Science (4)
BIOL 230 Human Physiology (4)
BIOL 320 Cell Biology (4)

Recommended Support Courses (0 credits required)
HLTH 475 Biostatistics (3)
CHEM 360 Principles of Biochemistry (4)
CHEM 460 Biochemistry I (3)
CHEM 465 Biochemical Techniques I (1)
MATH 122 Calculus II (4)
STAT 154 Elementary Statistics (3)

Electives Courses (21 credits)
Choose electives from the following to total 40 credits in Biology:
BIOL 420 BIOL 452 BIOL 472 BIOL 474 BIOL 475
BIOL 476 BIOL 478 BIOL 479 BIOL 499

Required Minor: None.

PLANT SCIENCE OPTION
The Plant Biology option includes the study of cells, genetics, anatomy, physiology, taxonomy, and ecology of terrestrial and aquatic vascular plants, mosses, algae and fungi. The option emphasizes plant structure and function, diversity, evolutionary and anatomical adaptations and interactions between plants and their environment. An option in plant sciences prepares undergraduate students for careers in education, biotechnology, field biology, pharmaceutical companies and government agencies. In addition, the option prepares students for Master’s and Doctoral degrees in Plant Science.

Required for Option (12 credits)
BIOL 105 General Biology I (4)
BIOL 106 General Biology II (4)
BIOL 211 Genetics (4)
Required General Education (13 credits) (including Math requirements)
MATH 112 College Algebra (4)
PHYS 211 Principles of Physics I (4)
CHEM 201 General Chemistry I (5)
Required Support Courses (8 credits)
(Choose one)
CHEM 111 Chemistry of Life Processes (5)
CHEM 202 General Chemistry II (5)
(Choose one)
STAT 154 Elementary Statistics (3)
HLTH 475 Biostatistics (3)
Core Courses (16 credits)
BIOL 215 General Ecology (4)
BIOL 217 Plant Science (4)
BIOL 441 Plant Physiology (4)
BIOL 442 Flora of Minnesota (4)
Recommended Support Courses (12 credits)
IT 100 Introduction to Computing and Applications (4)
ENG 271 Technical Communication (4)
MATH 121 Calculus I (4)
Electives (13 credits required)*
I. Choose at least 13 credits from the following list of Biology courses. The electives must include a minimum of two courses with a laboratory component
BIOL 301 BIOL 320 BIOL 404 BIOL 409
BIOL 410 BIOL 412 BIOL 430 BIOL 432
BIOL 443 BIOL 445 BIOL 451 BIOL 460
BIOL 479 BIOL 492# BIOL 497# BIOL 499#
Limit of 4 credits total from these courses
Biology

II. Choose at least 18 credits from non-Biology courses in consultation with your advisor.

Required Minor: None.

TOXICOLOGY OPTION

Toxicology is the study of the harmful effects of chemicals, radiation, and other stressors on biological systems. This is a wide-ranging course of study, allowing students to connect their background on chemistry, biology, physics, mathematics, etc. to understand all aspects of how an exposure may or may not yield a toxic result. Then students can do elementary risk assessment and environmental or medical analyses. The purpose of this option is to train students in the theory result. Then students can do elementary risk assessment and environmental or medical analyses. The purpose of this option is to train students in the theory and hands-on research techniques of an interdisciplinary biological science at the undergraduate level in a field where there are few programs in the United States. Since toxins can be antibiotics antiviral or other chemotherapeutic medications, antidotes, agricultural chemicals, industrial chemicals, radiation, or just stressors such as poor ergonomics, graduates can and have proceeded into research an testing of pharmaceuticals, pesticides, and environmental toxicology in industry, government, or academic institutions. Additionally, training in risk assessments leads to additional opportunities for statistical modeling, which is employed in the areas mentioned above and industrial hygiene.

Required for Option (12 credits)
- BIOL 105 General Biology I (4)
- BIOL 106 General Biology II (4)
- BIOL 211 Genetics (4)

Required General Education (13 credits)
- CHEM 201 General Chemistry I (5)
- PHYS 211 Principles of Physics I (4)
- MATH 121 Calculus I (4)

Required for Support Courses (29 credits)
- CHEM 202 General Chemistry II (5)
- CHEM 305 Analytical Chemistry (4)
- CHEM 320 Organic Chemistry I (5)
- CHEM 321 Organic Chemistry (3)
- CHEM 460 Biochemistry I (3)
- CHEM 461 Biochemistry II (3)
- CHEM 465 Biochemical Techniques I (1)
- CHEM 466 Biochemical Techniques II (2)
- HLTH 475 Biostatistics (3)

Core Courses (32 credits)
- BIOL 215 General Ecology (4)
- BIOL 230 Human Physiology (4)
- BIOL 270 Microbiology (4)
- BIOL 460 Introduction to Toxicology (3)
- BIOL 461 Environmental Toxicology (4)
- BIOL 462 Toxicology Seminar (1)
- BIOL 464 Methods of Applied Toxicology (3)
- BIOL 465 Applied Toxicology Project (3)
- BIOL 466 Principles of Pharmacology (3)
- BIOL 467 Industrial Hygiene (3)

Recommended Support Courses (0 credits)

Elective Courses (0 credits)

Required Minor: None

ZOOLOGY OPTION

Zoology is a major branch of the biological sciences that involves the study of animals. Study in this area focuses on organismal diversity, animal structures and the functions, genetics, development, evolution, behavior, and ecological interactions. Occupations that may be available to graduate include: Animal Husbandry, Museum/Zoo Guide, Animal Laboratory Technician, Animal Trainer, Pest Control Technician, Museum Curator, Entomologist, Environmental Consultant, Field Researcher, Science Writer, Physician, Veterinarian, Wildlife Rehabilitator, Zoo Keeper, and Zoologist. Advanced training in professional or graduate schools is required in many of these areas and acceptance for advanced training is competitive. Success in this career field typically requires: a thorough knowledge of general biology, the ability to work and relate with animals, proficiency in reading and writing the ability to collect and analyze data, and an interest in problem solving and decision making.

Required for Option (12 credits)
- BIOL 105 General Biology I (4)
- BIOL 106 General Biology II (4)
- BIOL 211 Genetics (4)

Required General Education (13 credits)
- CHEM 201 General Chemistry I (5)
- MATH 112 College Algebra (4)
- PHYS 211 Principles of Physics I (4)

Recommended Support Courses (8 credits)
- BIOL 497# BIOL 499#

Required Support Courses (8 credits)
- CHEM 111 Chemistry of Life Processes (5)
- CHEM 202 General Chemistry II (5)
- STAT 154 Elementary Statistics (3)
- HLTH 475 Biostatistics (3)

Core Courses (22-23 credits)
- BIOL 215 General Ecology (4)
- BIOL 301 Evolution (2)
- BIOL 316 Animal Diversity (3)
- BIOL 408 Vertebrate Ecology (4)
- BIOL 431 Comparative Animal Physiology (3)
- Choose two from the following:
 - BIOL 420 Diagnostic Parasitology (3)
 - BIOL 421 Entomology (3)
 - BIOL 436 Animal Behavior (4)
 - BIOL 438 General Endocrinology (3)

Recommended Support Courses (0 credits required)
- IT 100 Introduction to Computing and Applications (4)
- ENG 271 Technical Communication (4)
- MATH 121 Calculus I (4)

Electives Courses (24 credits)

I. Choose at least six credits from the following Biology courses
- BIOL 320
- BIOL 324
- BIOL 403
- BIOL 409
- BIOL 410
- BIOL 412
- BIOL 420
- BIOL 434
- BIOL 435
- BIOL 438
- BIOL 460
- BIOL 472
- BIOL 479
- BIOL 492#
- BIOL 497# BIOL 499#

Other electives may apply with advisor’s consent.

II. Choose at least 18 credits from non-Biology courses in consultation with your advisor.

Required Minor: None

LIFE SCIENCE TEACHING BS

See the SCIENCE TEACHING section of this bulletin.

BIOLOGY MINOR

Required for Minor (17 credits)
- BIOL 105 General Biology I (4)
- BIOL 106 General Biology II (4)
- BIOL 211 Genetics (4)

Choose one course from the following:
- BIOL 215
- BIOL 217
- BIOL 220
- BIOL 270

2010-2011 Undergraduate Bulletin
Biology

Additional Elective. Any 200 level or above course to total 17 credits in the minor.

COURSE DESCRIPTIONS

BIOL 100 (4) Our Natural World
Introductory course designed for students not majoring in science. Focuses on basic biological principles with special emphasis on the human species. Includes scientific problem solving, biodiversity, human and social aspects of biology, ecology, cellular processes and organ function, human reproduction, pre-natal development, and heredity. Lecture, laboratory, and small group discussions. Fall, Spring
GE-3

BIOL 101 (2-4) Biological Perspectives
Students focus on specific biological perspectives, including environmental science, biology of women, biotechnology, human heredity, etc. May be repeated for credit under different sub-titles.
Fall, Spring

BIOL 102 (3) Biology of Women
An introduction to biological topics of special interest to women with emphasis on anatomic and physiologic changes over the course of a woman’s lifetime. Designed for students not majoring in science. Presents fundamental biologic concepts within this specialized context and provides opportunity to collect, evaluate, and analyze data.
Fall, Spring
GE-3

BIOL 103W (3) Introduction to Biotechnology
An introductory course designed for students not majoring in science. Focuses on basic biological principles as applied to biotechnology. Includes basic natural science principles, scientific problem solving, and human and social aspects of biotechnology. Lecture, laboratory, and small group discussions.
Fall
GE-1C, GE-3

BIOL 104 (4) General Biology I
Study of biological processes at the suborganismal level including cell chemistry, metabolism, reproduction, genetics, and complex tissue physiology. Laboratory and discussion sessions stress problem solving and experimental design.
Fall, Spring
GE-3

BIOL 105 (4) General Biology I
Study of biological processes at the suborganismal level including cell chemistry, metabolism, reproduction, genetics, and complex tissue physiology. Laboratory and discussion sessions stress problem solving and experimental design.
Fall, Spring
GE-1C, GE-3

BIOL 106 (4) General Biology II
Study of biological processes at the organismal level including a survey of life forms (viruses, bacteria, protists, fungi), plants, and animals), their evolution, and ecology. Laboratory and discussion sessions stress problem solving and experimental design.
Pre: BIOL 105
Fall, Spring

BIOL 107 (4) Orientation to Clinical Laboratory Science
An introduction to the health care profession with special emphasis on clinical laboratory personnel. Course includes presentations by professionals in some of the major health care fields, especially medical technology. Includes lectures, field observations.
Spring

BIOL 108 (4) Genetics
Introduction to genetic analysis. Topics covered include those both classical and modern genetics: population genetics, molecular genetics, genetic manipulation of organisms and selection. Central to this course will be the primacy of the trait as the object of genetics and the development/refinement of the concept of the gene. Lab included.
Pre: BIOL 105, BIOL 106, and MATH 112
Fall, Spring, Summer

BIOL 109 (4) General Ecology
Principles of the study of relationships between organisms and the environment. Topics include flow of energy and materials, organism-level interactions, growth and evolution of populations, and community ecology. Field trips to prairie, lake, stream, and forest communities, training in data collection and analysis, use of equipment, and report writing. Lab included.
Pre: BIOL 105 and BIOL 106 or consent
Fall

BIOL 210 (3) Plant Science
Biology of plants including unique features of plant cells, life histories, metabolism, anatomy, physiology, and ecology. The course emphasizes plants’ remarkable adaptations to their environments, their diversity, and the vital roles they play in ecological interactions. For biology and environmental science majors and minors. Lab included.
Pre: BIOL 105 and BIOL 106 or consent
Spring

BIOL 211 (4) Genetics
Introduction to genetic analysis. Topics covered include those both classical and modern genetics: population genetics, molecular genetics, genetic manipulation of organisms and selection. Central to this course will be the primacy of the trait as the object of genetics and the development/refinement of the concept of the gene. Lab included.
Pre: BIOL 105, BIOL 106, and MATH 112
Fall, Spring, Summer

BIOL 212 (4) Human Anatomy
Systems approach to the structure of the human body. The course is designed for students majoring in biology or health related programs. Lab included.
Fall, Spring

BIOL 213 (4) Human Physiology
Function of living systems with emphasis on human species. Lab included.
Pre: BIOL 220 and one semester of chemistry from among CHEM 104, CHEM 106, CHEM 111, or CHEM 201
Fall, Spring, Summer

BIOL 215 (4) General Ecology
Study of the relationships and interactions of organisms and their environment. Topics include flow of energy and materials, organism-level interactions, growth and evolution of populations, and community ecology. Field trips to prairie, lake, stream, and forest communities, training in data collection and analysis, use of equipment, and report writing. Lab included.
Pre: BIOL 105 and BIOL 106 or consent
Spring

BIOL 220 (4) Human Anatomy
Systems approach to the structure of the human body. The course is designed for students majoring in biology or health related programs. Lab included.
Fall, Spring

BIOL 221 (4) Genetics
Introduction to genetic analysis. Topics covered include those both classical and modern genetics: population genetics, molecular genetics, genetic manipulation of organisms and selection. Central to this course will be the primacy of the trait as the object of genetics and the development/refinement of the concept of the gene. Lab included.
Pre: BIOL 105, BIOL 106, and MATH 112
Fall, Spring, Summer

BIOL 222 (4) Human Physiology
Function of living systems with emphasis on human species. Lab included.
Pre: BIOL 220 and one semester of chemistry from among CHEM 104, CHEM 106, CHEM 111, or CHEM 201
Fall, Spring, Summer

BIOL 223 (4) Human Anatomy
Systems approach to the structure of the human body. The course is designed for students majoring in biology or health related programs. Lab included.
Fall, Spring

BIOL 224 (4) Human Physiology
Function of living systems with emphasis on human species. Lab included.
Pre: BIOL 220 and one semester of chemistry from among CHEM 104, CHEM 106, CHEM 111, or CHEM 201
Fall, Spring, Summer

BIOL 225 (4) Human Anatomy
Systems approach to the structure of the human body. The course is designed for students majoring in biology or health related programs. Lab included.
Fall, Spring

BIOL 226 (4) Human Physiology
Function of living systems with emphasis on human species. Lab included.
Pre: BIOL 220 and one semester of chemistry from among CHEM 104, CHEM 106, CHEM 111, or CHEM 201
Fall, Spring, Summer

BIOL 270 (4) Microbiology
An introduction to the general principles and methods used in the study of microorganisms. Lab included.
Pre: One BIOL course and one semester of chemistry from among CHEM 104, CHEM 106, CHEM 111, or CHEM 201
Fall, Spring, Summer

BIOL 271 (4) Evolution
Evolution is a unifying theory of biology. Students are provided the history of evolutionary thought and the Darwinian revolution, evidence for evolution, mechanisms of evolution, and an array of special topics such as speciation, molecular evolution, conservation, and extinction. Readings will include book chapters and journal articles. Lecture/discussion.
Pre: BIOL 205, BIOL 210, BIOL 211
Spring

BIOL 272 (4) Evolution
Evolution is a unifying theory of biology. Students are provided the history of evolutionary thought and the Darwinian revolution, evidence for evolution, mechanisms of evolution, and an array of special topics such as speciation, molecular evolution, conservation, and extinction. Readings will include book chapters and journal articles. Lecture/discussion.
Pre: BIOL 205, BIOL 210, BIOL 211
Spring
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Description</th>
<th>Prerequisites</th>
<th>Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 316 (3)</td>
<td>Animal Diversity</td>
<td>A comprehensive phylogenetic survey of both invertebrate and vertebrate animals. Emphasis on evolutionary relationships among phyla, the evolution of organ systems, animal organization and function, animal adaptations, and zoogeographical considerations. Research and inquiry of animal unity and diversity will include using the Internet. Lab included. Pre: BIOL 105 and BIOL 106.</td>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 320 (4)</td>
<td>Cell Biology</td>
<td>An examination of eukaryotic cellular structure, organization and physiology. Lab included.</td>
<td>Pre: BIOL 105 and BIOL 106, BIOL 211</td>
<td>Fall</td>
</tr>
<tr>
<td>BIOL 324 (3)</td>
<td>Neurobiology</td>
<td>Basic anatomy and physiology of the nervous system. The course is designed for students majoring in biology, psychology or health related programs. Pre: BIOL 220 and BIOL 230.</td>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 380 (3)</td>
<td>Blood Banking/Urnalysis</td>
<td>Basic understanding of the principles of immunohematology applied to the area of blood banking including major blood group systems, principles for antigen/antibody detection and identification, donor blood collection, transfusion evaluation, theory of renal function in health and disease, specimen collection, handling, and processing, and components of routine urinalysis. Pre: BIOL 230.</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 402 (4)</td>
<td>Stream Ecology</td>
<td>The structure and function of stream ecosystems are presented with emphasis on adaptations of organisms to stream life and connections between stream organisms, the aquatic environment, and the surrounding watershed. Includes lab, field work, and team projects. Pre: BIOL 105, BIOL 106, BIOL 215 or consent.</td>
<td>Summer</td>
<td></td>
</tr>
<tr>
<td>BIOL 403 (3)</td>
<td>Conservation Biology</td>
<td>Applications of principles from ecology, genetics, behavior, demography, economics, philosophy, and other fields to the conservation and sustainable use of natural populations of plants and animals. Lectures and discussions address topics such as habitat fragmentation, parks and reserves, genetic diversity, population viability, and extinction. Pre: BIOL 215 or consent.</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 404 (4)</td>
<td>Wetlands</td>
<td>To provide students the values and functions of wetlands and to use wetlands as an example of the relationship of ecology to management, and the impact that classification systems have politically. Lab (fieldwork) included. Pre: BIOL 105, BIOL 106, BIOL 215, or consent.</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 405 (3)</td>
<td>Fisheries Biology</td>
<td>An introduction to fish biology and fisheries management, diversity, form and function in the aquatic environment, functional physiology, evolution and speciation, identification and use of keys, ecology, and management topics. Pre: BIOL 105, BIOL 106, BIOL 215, or consent of instructor ALT-Fall.</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 408 (4)</td>
<td>Vertebrate Ecology</td>
<td>A field course in the ecology of birds, mammals, amphibians, reptiles, and fishes. Students are trained in sampling techniques such as mark-and-recapture, population size estimation and monitoring, and species identification of live and preserved specimens. Lectures encompass evolution and adoption, origins, energetics, mating systems, morphology, geographical distributions, and population-level phenomena. Lecture and Laboratory. Pre: BIOL 105, BIOL 106, BIOL 215 or consent.</td>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 409 (4)</td>
<td>Advanced Field Ecology</td>
<td>A field course focused on the function and dynamics of various North American ecosystems. Emphases will be on natural history, critical thought, and experimental design. Students will be trained in a variety of soil, plant, and animal sampling techniques. Depending on enrollment, there may be additional costs (e.g., camping fees) for the course. Pre: BIOL 105, BIOL 106, BIOL 215 or consent.</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 410 (3)</td>
<td>Global Change Biology</td>
<td>This class examines the effects of natural and human-induced changes in climate on terrestrial and marine ecosystems. The course focuses on the science behind global change issues that have biological, social, and economic implications. Pre: BIOL 105, BIOL 106, BIOL 215 or consent.</td>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 412 (4)</td>
<td>Soil Ecology</td>
<td>Soil ecology will focus on the genesis and classification of soils, the physical properties of soil as they relate to habitat formation, niches, interactions that exist among soil organisms, human impact on soil systems relative to population pressures and management practices. Lab included. Pre: BIOL 105, BIOL 106, BIOL 215, or consent.</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 417 (3)</td>
<td>Biology of Aging and Chronic Diseases</td>
<td>Emphasis is placed on the biomedical aspects of aging and chronic disease. The course is designed for students majoring in biology, gerontology programs, or other health related programs. Pre: BIOL 100 or BIOL 105.</td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 419 (2-3)</td>
<td>Special Topics in Instrumentation</td>
<td>Instruction in specialized biological instrumentation. Pre: BIOL 105 and BIOL 106.</td>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 420 (3)</td>
<td>Diagnostic Parasitology</td>
<td>Clinically important parasites. Protozoans, Flukes, Tapeworms, Roundworms, Ticks, Mites and Insects. Designed for Medical Technology, Pre-Med, Pre-Vet and Biology majors. Identification, clinical disease, epidemiology and ecology are covered. Lab included. Pre: BIOL 100 or BIOL 105, BIOL 106 recommended.</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 421 (3)</td>
<td>Entomology</td>
<td>Morphological, physiological, medical, and economic significance of insects. Pre: BIOL 105 and BIOL 106 or consent ALT-Fall.</td>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIOL 430 (4)</td>
<td>Hematology/Introduction to Immunology</td>
<td>Collection, examination, evaluation, morphology, function and diseases of blood cells. Hemostasis/coagulation of blood. Immunology theory is presented. Lab included. Pre: BIOL 230.</td>
<td>Spring</td>
<td></td>
</tr>
</tbody>
</table>
Biology

Biol 431 (3) Comparative Animal Physiology
A comparison of adaptation mechanisms, from cell to organ-system, used by animals in response to “changes in” environmental conditions such as oxygen, carbon dioxide, food availability, temperature, water, solutes, pressure and buoyancy.
Pre: BIOL 105, BIOL 106 or consent
ALT-Fall

Biol 432 (4) Lake Ecology
This course is an introduction to the physical, chemical, and biological characteristics and interactions of inland freshwater lakes. Labs will emphasize field work, including data collection from five local lakes, analysis, and discussion.
ALT-Fall

Biol 433 (3) Cardiovascular Physiology
This course is a functional study of the heart and circulatory system.
Spring

Biol 434 (3) Development and Human Embryology
Understanding the process of cell differentiation and development. These principles are then applied to the descriptive study of human embryology including the basis of congenital malformations.
Pre: BIOL 100 or BIOL 105
Fall

Biol 435 (4) Histology
Study of types, arrangements and special adaptations of human tissues. Lab included.
Pre: BIOL 220
Spring

Biol 436 (4) Animal Behavior
An exploration of behavioral strategy, communication, learning, and social systems of animals, with emphases placed on the causes, evolution, ecological implications, and function of behavior at the individual and population level. Lab included.
Pre: BIOL 105, BIOL 106, BIOL 215
Spring

Biol 438 (3) General Endocrinology
This course provides the basis for understanding hormones and the mechanisms of their actions in both the normal and pathological states. Sample topics to be included are diabetes, osteoporosis, hormones of reproduction and current social and medical issues related to the course.
Pre: BIOL 100 or BIOL 105
Spring

Biol 441 (4) Plant Physiology
Plant functions such as water relations, mineral nutrition, translocation, metabolism, photosynthesis, photosymbiosis, fat and protein metabolisms, respiration, growth and development, phytohormones, reproduction and environmental physiology. Lab included.
Pre: BIOL 105, BIOL 106, BIOL 217, one semester organic chemistry recommended.
Spring

Biol 442 (4) Flora of Minnesota
Field identification of plants with emphasis on local flora. History systematic, techniques, plant biogeography, methods of plant collection, preservation, preparation of herbarium specimens are covered. Lab and field trips included.

Biol 443 (4) Plant Ecology
Expands upon general principles of ecology to focus on the factors that regulate the distribution and abundance of plants, analysis of plant populations, and dynamics of plant communities. Lecture and lab (fieldwork) included.
Pre: BIOL 105, BIOL 106, BIOL 215 or consent. BIOL 217 strongly recommended.
Fall

Biol 445 (4) Economic Botany
We interact with plants every day and they’ve had a profound affect on human history and society. This course surveys the roles of plants in foods, beverages, medicines, drugs, poisons, fibers, fuels, building materials, ceremony, landscape, and more. Lecture, discussion, lab, and field trip. Open to non-science majors.
Pre: BIOL 100 or BIOL 106, or consent
Spring

Biol 451 (4) Plant Biotechnology
Lecture/laboratory course that presents an integrated view of plant biology, crop science, and current issues in biotechnology. Course focuses on issues of global concern such as sustainable food production, biofuels, genetically modified crops, molecular pharming, and tissue culture.
Pre: BIOL 105, BIOL 106
Fall

Biol 452 (3) Biological Instrumentation
The principle and operation of instruments and their application to biological research. Types of instrumentation examined include spectroscopic, chromatographic, electroanalytic, radiographic, and imaging. Laboratory Information Management systems (LIMS) will also be examined. Emphasis is placed on GLP, GMP, and ISO 9000 practices.
Pre: BIOL 105, BIOL 106, or consent

Biol 453 (4) Biological Engineering Analysis I
The application of engineering principles and skills as applied to fermentation and to biological product recovery.
Pre: BIOL 270 and one semester each of calculus, physics, and organic chemistry, taken concurrently with BIOL 456.
Fall

Biol 454 (4) Biological Engineering Analysis II
Continuation of Biological Engineering Analysis I. The application of engineering principles and skills as applied to fermentation and to biological product recovery.
Pre: BIOL 453, taken currently with BIOL 457
Spring

Biol 456 (3) Biotechnology Project/Laboratory I
Practical laboratory experience in biotechnology through the selection and development of a research project. Students are expected to spend an average of 12 hours per week on the project.
Pre: Concurrent enrollment in BIOL 453
Fall

Biol 457 (3) Biotechnology Project/Laboratory II
Continuation of Biotechnology Project/Laboratory I. Practical laboratory experience in biotechnology through the selection and development of a research project. Students are expected to spend an average of 12 hours per week on the project.
Pre: BIOL 456, taken concurrently with BIOL 454
Spring

Biol 460 (3) Introduction to Toxicology
A lecture course covering basic principles of toxicity evaluation in living organisms, mechanisms of responses to chemicals or physical agents within an overview of practical medical, environmental and science policy implications. Presentation of comparisons of specific organ and tissue reactions to toxins in a variety of species follow these introductory concepts.
Pre: BIOL 105, BIOL 106, and 1 year of General Chemistry
ALT-Fall

Biol 461 (4) Environmental Toxicology
A lecture/laboratory course that focuses on anthropogenic and natural toxicants, mathematical modeling of the dispersion of chemical and physical agents in the environment, effects on species and ecosystems with a special section on aquatic risk assessment. The laboratory includes techniques in environmental toxicity and a genuine research project.
Pre: BIOL 460
ALT-Spring

2010-2011 Undergraduate Bulletin
BIOLOGY

Biol 462 (1) Toxicology Seminar
A seminar course that involves critical evaluation of published studies in toxicology, student presentations of a selected published manuscript and requires students to write a paper on one aspect of the course’s topic area that semester. Topic areas vary each time the course is offered.
Pre: BIOL 105, BIOL 106, and General Chemistry
ALT-Fall

Biol 464 (3) Methods of Applied Toxicology
A lecture/laboratory course focusing on the steps necessary to start a research project from project definition through methods testing and evaluation, and a final report that includes a project flow chart. Third year students will have senior and/or graduate mentors.
Pre: BIOL 105, BIOL 106, and General Chemistry
ALT-Fall

Biol 465 (3) Applied Toxicology Project
A lecture/laboratory course where students perform all aspects of their own designed research topic in toxicology while critically evaluating the progress of other projects as well. Students will be expected to keep timelines or develop modified timelines as necessary. The inverted triangle approach of project design will be examined and then included in all designs.
Pre: BIOL 464
ALT-S

Biol 466 (3) Principles of Pharmacology
A lecture course that examines mechanisms of drug action, physiological responses and adverse reactions from sensitivities or allergies through overdose.
Pre: BIOL 105, BIOL 106, BIOL 230, and 1 year of General Chemistry
ALT-Fall

Biol 467 (3) Industrial Hygiene
A lecture course that examines Minnesota State Mankato, as your own work place to develop reports on a selected group of chemical and physical hazards of the workplace. Evaluation methods and solutions to existing problems are developed with concise reporting skills.
Pre: BIOL 105, BIOL 106, and 1 year of General Chemistry
ALT-Spring

Biol 472 (4) Microbial Ecology and Bioremediation
Role of microorganisms in soil, air, water, sewage processes as well as methods of measurement and detection. Special emphasis on the role of microorganisms in bioremediation. Lab included.
Pre: BIOL 105, BIOL 106, and BIOL 270
ALT-Spring

Biol 474 (4) Immunology
Fundamental principles of humoral and cell mediated immunity and the applica- tion of these principles. Current experimental work in the different areas of immunology will be discussed. Lab included.
Pre: BIOL 105, BIOL 106, and BIOL 270
Fall

Biol 475 (4) Medical Microbiology
This course will cover bacterial, fungal, and viral human pathogens: what diseases they cause, how they cause disease, and how humans defend against and prevent those diseases. In the laboratory the student will isolate and identify pathogenic microorganisms using microbiological, biochemical, and immunological techniques.
Pre: BIOL 270

Biol 476 (5) Microbial Physiology and Genetics
This course presents the physiology and genetics of microorganisms emphasizing those aspects unique to bacteria and archa. Topics include: energy production; biosynthesis of small molecules and DNA, RNA, and proteins; the formation of cell walls and membranes; microbial differentiation and behavior; and the genetic and biochemical regulation of these processes. Lab included.
Pre: BIOL 105, BIOL 106, BIOL 270
Spring

Biol 477 (4) Food Microbiology and Sanitation
The role microbes play in production and spoilage of food products, as prepared for mass market. Topics include foodborne pathogens, epidemiology and control, essential principles in sanitation including Hazard Analysis/Critical Control Point and ISO 9000 requirements. Lab included.
Pre: BIOL 105, BIOL 106 and BIOL 270
Spring

Biol 479 (4) Molecular Biology
This course will cover both eukaryotic and prokaryotic molecular biology in- cluding: DNA and RNA structure, transcription, regulation of gene expression, RNA processing, protein synthesis, DNA replication, mutagenesis and repair, recombination, and insertion elements. A number of important techniques used in recombinant DNA technology will be discussed and practiced.
Pre: BIOL 105, BIOL 106, or consent
Spring

Biol 480 (3) Biological Laboratory Experiences for Elementary Teachers
Provides experience with a wide variety of biological laboratory exercises to prepare prospective elementary teachers. Emphasis is on building knowledge, skills, and confidence. The course will cover major biological concepts and environmental education through classroom-ready examples selected to illustrate each concept.
Fall, Spring

Biol 481 (1) Lab Supervision and Maintenance
Experience in maintaining and supervising laboratories. For individuals desiring additional experience with students in laboratory situations.
Fall

Biol 483 (1) MAX Scholar Seminar
This class provides MAX scholars with an opportunity to explore a set of top- ics related to achieving success in academic, professional and personal realms. Speakers will include faculty, graduate students, visiting researchers and industry members as well as student participants. Students will be required to participate in mentoring of lower division MAX scholarship recipients and provide written and oral presentations of various topics during the semester.
Pre: Recipient of a MAX scholarship or instructor consent.
Fall, Spring

Biol 485 (4) Biology Teaching Methods and Materials
A basic science methods course designed to prepare prospective junior and senior high life science teachers. Course will cover science teaching methods and support materials as they apply to life science teaching situations.
Pre: 16 credits BIOL
Fall

Biol 486 (3) Field-Based Teaching Methods and Materials
A lecture/laboratory course that provides opportunity for prospective junior and senior high life science teachers to observe, practice, and refine their teaching skills. Students will work in a school setting and experience actual classroom.
Pre: BIOL 485
ALT-Spring

Biol 490 (1-4) Workshop
A variable topic course designed for a selected topic in Biology. Workshops provide an intensive learning experience on a new topic in the Biological Sciences and/or hands-on experiences in a current area not covered by other course offerings. The course involves background reading, demonstrations, and laboratory or field experiences.
Fall, Spring

Biol 491 (1-4) In-Service
Fall, Spring

Biol 492 (1-3) Honors Research
Fall, Spring

2010-2011 Undergraduate Bulletin
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
<th>Prerequisite</th>
<th>Time Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 493</td>
<td>Cytotechnology/Cytogenetics Clinical Internship I</td>
<td>The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the respective areas of cytotechnology or cytogenetics. Instructor Permission</td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 494</td>
<td>Cytotechnology/Cytogenetics Clinical Internship II</td>
<td>Continuation of Cytotechnology/Cytogenetics Clinical Internship I. The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the respective areas of cytotechnology or cytogenetics. Instructor Permission</td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 495</td>
<td>Cytotechnology/Cytogenetics Clinical Internship III</td>
<td>Continuation of Cytotechnology/Cytogenetics Clinical Internship II. The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the respective areas of cytotechnology or cytogenetics. Instructor Permission</td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 496</td>
<td>Cytotechnology/Cytogenetics Clinical Internship IV</td>
<td>Continuation of Cytotechnology/Cytogenetics Clinical Internship III. The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the respective areas of cytotechnology or cytogenetics. Instructor Permission</td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 497</td>
<td>Internship I</td>
<td>Experience in applied biology according to a prearranged training program for a minimum of five 40-hour weeks. Pre: Consent</td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 498</td>
<td>Internship II</td>
<td>Experience in applied biology according to a prearranged training program for a minimum of five 40 hour weeks. Only four credits can be applied to the major. Pre: Consent</td>
<td>Fall, Spring</td>
<td></td>
</tr>
<tr>
<td>BIOL 499</td>
<td>Individual Study</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>