Huang, Ph.D.; Bill Hudson, Ph.D.; Rajiv Kapadia, Ph.D.; Muhammad Khaliq, Ph.D.; Julio Mandojana, Ph.D.; Ramakrishna Nair, Ph.D.; Vincent Winstead, P.E., Ph.D.; Qin Zhang, Ph.D.

Computer Engineering (CE) encompasses the research, development, design and operation of computers and computerized systems and their components. This program leads to a Bachelor of Science in Computer Engineering. The primary objective of the Computer Engineering program is to educate engineering professionals who possess sound design and analytical background coupled with a strong laboratory experience supporting Computer Engineering concepts. This means that the department prepares its graduates for:

1. Entry into the engineering work environment with well developed design and laboratory skills.
2. Further study toward advanced degrees in engineering and other related disciplines.
3. Advancement into managerial ranks and/or entrepreneurial endeavors.

The educational objectives for our Bachelor of Science in Computer Engineering degree are to prepare our graduates to:

1. Function as responsible members of society with an awareness of the social, ethical, and economic ramifications of their work.
2. Become successful practitioners in engineering and other diverse careers.
3. Succeed in full time graduate and professional studies.
4. Pursue continuing and life-long learning opportunities.
5. Pursue professional registration.
6. Provide foundational education that allows for personal growth and flexibility through their career.

Our metrics for determining success in meeting these objectives will include:

1. Assessment of societal, economic awareness, and ethical performance of our graduates by the graduate and employer.
2. Monitoring of the success of our graduates in the work force.
3. Monitoring of the success of our graduates in graduate and professional programs.
4. Assessment of continuing and life-long learning by the graduate (and their employer as applicable.).
5. Reviewing the number and success of our students completing professional registration to advance their careers.

In support of these objectives, the program provides a curriculum including the following components that will prepare students for excellent careers in Computer Engineering:

1. A strong background in the physical sciences; mathematics, including discrete math; and engineering sciences, including extensive hands-on laboratory instruction.
2. An integrated design component including instruction in basic practices and procedures, creativity, control, economics, and synthesis. The process begins with basic instruction during the freshman year and concludes with a capstone design project.
3. A choice of sub-disciplines in the senior level electives.
4. Opportunities for students to develop sensitivity to the social and humanistic implications of technology and motivate them to make worthwhile contributions to the profession and society, while upholding the highest standards of professional ethics.
5. A course in engineering economics to promote awareness of the economic aspects of engineering.
6. Preparation for continuing study and professional development.

During the senior year, as allowed by the state, students will be required to take the Fundamentals of Engineering (FE) examination or its equivalent as described in GPA Policy below.

The curriculum offers students the opportunity to emphasize a number of specialized areas including advanced digital systems, communications, digital signal processing, networking and system design.

The recommended high school preparation is two years of algebra, one year of geometry, one-half year of trigonometry, one-half year of college algebra, and a year each of physics and chemistry plus a programming language. Without this background it may take students longer than four years to earn a degree. During the first two years students take science and mathematics courses common to all branches of engineering (pre-engineering), as well as supporting work in English, humanities, and social sciences. Second-year computer engineering students complete physics, mathematics and 200-level engineering and computer science courses.

All international students wishing to have transfer credits granted from non-U.S. schools will be required to use the ECE evaluation service to be completed no later than first semester at Minnesota State Mankato.

Admission to Major. Admission to the college is necessary before enrolling in non-engineering 300- and 400-level courses. Minimum college requirements are:

- a minimum of 32 earned semester credit hours.
- a minimum cumulative GPA of 2.00 (“C”).

Please contact the department for application procedures.

During spring semester of the sophomore year, students should submit an application form for admission to the Computer Engineering program. Admission to the program is selective and, following applications to the department, subject to approval from the faculty. The department makes a special effort to accommodate transfer students. Only students admitted to the program are permitted to enroll in upper-division engineering courses. No transfer credits are allowed for upper-division engineering courses except by faculty review followed by written permission.

Before being accepted into the program and admitted to 300-level engineering courses (typically in the fall semester), a student must complete a minimum of 65 semester credits including the following:

- General Physics (calculus-based) (12 credits)
- Calculus, Differential Equations, Probability & Statistics (19 credits)
- Electrical Engineering Circuit Analysis I and II (including lab.) (7 credits)
- Chemistry (3 credits)
- English Composition (4 credits)
- Computer Science (3 credits)
- Introduction to Electrical and Computer Engineering (6 credits)
- Discrete Math (4 credits)
- Speech (3 credits)
- Microprocessor Lab (1 credit)
- Computer Hardware and Org. (3 credits)

A cumulative GPA of 2.5 for all science and math courses must have been achieved for program admittance. Grades must be 2.0 (“C”) or better for courses to be accepted.

GPA Policy. Students graduating with a degree in Computer Engineering must have:

1. completed a minimum of 20 semester credit hours of upper division EE and CS courses at Minnesota State Mankato.
2. have a cumulative GPA of 2.25 on all upper division EE and CS courses, and
3. have completed their senior design sequence at Minnesota State Mankato.
4. have taken the Fundamentals of Engineering (FE) exam or its equivalent and achieved the desired competency level.
P/N Grading Policy. A student who majors in CE must elect the grade option for all required courses including courses offered by another department.

Required General Education
CHEM 191 Chemistry for Engineers (3)
ENG 101 Composition I (4)
MATH 121 Calculus I (4)
PHYS 221 General Physics I (4)
(Choose one of the following)
CMST 102 Public Speaking (3)
ENG 271 Technical Communication (4)
(Choose one of the following)
ECON 201 Principles of Macroeconomics (3)
ECON 202 Principles of Microeconomics (3)

Prerequisites to the Major
CS 220 Machine Structures and Programming (3)
EE 106 Intro to EE and CE I (3)
EE 107 Intro to EE and CE II (3)
EE 230 Circuit Analysis I (3)
EE 231 Circuit Analysis II (3)
EE 235 Microprocessor Engineering Lab I (1)
EE 240 Evaluation of Circuits (1)
EE 295 Computer Hardware and Organization (3)
MATH 122 Calculus II (4)
MATH 180 Mathematics for Computer Science (4)
MATH 223 Calculus III (4)
MATH 321 Ordinary Differential Equations (4)
PHYS 222 General Physics II (3)
PHYS 223 General Physics III (3)
PHYS 232 General Physics II Lab (1)
PHYS 233 General Physics III Lab (1)

Major Common Core
CS 320 Computer Architecture (3)
CS 460 Operating Systems: Design & Implementation (3)
EE 332 Electronics I (3)
EE 333 Electronics II (3)
EE 334 Microprocessor Engineering (3)
EE 336 Principles of Engineering Design I (1)
EE 337 Principles of Engineering Design II (1)
EE 341 Signals and Systems (3)
EE 342 Electronics Laboratory (1)
EE 344 Design and Evaluation of Microprocessors II (1)
EE 350 Engineering Electromagnetics (3)
EE 358 Control Systems (3)
EE 368 Control Systems Lab (1)
EE 381 Digital System Design with Testability (3)
EE 382 Digital System Design with Testability Lab (1)
EE 450 Engineering Economics (3)
EE 467 Principles of Engineering Design III (1)
EE 477 Principles of Engineering Design IV (1)
ME 299 Thermal Analysis (2)

Major Restricted Electives
At least two lecture courses must be in the same area
EE 453 Advanced Communications Systems Engineering (3)
EE 471 Advanced Control Systems (3)
EE 472 Digital Signal Processing (3)
EE 475 Integrated Circuit Engineering (3)
EE 476 Antennas, Propagation & Microwave Engineering (3)
EE 479 Superconductive Devices (3)
EE 480 Integrated Circuit Fabrication Lab (1)
EE 481 VLSI Design Laboratory (1)
EE 484 VLSI Design (3)
EE 487 RF Systems Engineering (3)

Other Graduation Requirements
(Choose one of the following)
MATH 354 Concepts of Probability and Statistics (3)
ME 291 Engineering Analysis (3)

Required Minor: None.

COURSE DESCRIPTIONS

Computer Science
CS 220 (3) Machine Structures and Programming
This course introduces students to assembly language programming and basic machine structures. Topics include number systems; basic central processing unit (CPU) organization, instruction formats, addressing modes and their use with a variety of data structures; and parameter passing techniques.
Pre: CS 110 and EE 106
Fall, Spring

CS 320 (3) Computer Architecture
This course presents historical and current concepts and implementations of computer organization. Topics include instruction set design, digital storage, performance metrics, processor datapath and control, pipelining, memory hierarchy, busses and I/O interfacing, and parallel processors.
Pre: CS 111 and CS 220, or EE 334
Spring

CS 460 (3) Operating Systems: Design & Implementation
This course studies historical and current concepts and implementations of computer operating systems. Basic operating systems topics include processes, interprocess communication, interprocess synchronization, deadlock, memory allocation, segmentation, paging, resource allocation, scheduling, file systems, storage, devices, protection, security, and privacy.
Pre: CS 210 and CS 320
Spring

Electrical Engineering Courses
EE 106 (3) Introduction to Electrical/Computer Engineering I
This introductory course covers digital systems topics including binary numbers, logic gates, Boolean algebra, circuit simplification using Karnaugh maps, flip-
AC circuits. Measurement of properties for circuits using operational amplifiers and interface with external hardware using robots and sensors.
Pre: EE 106
Spring

EE 230 (3) Circuit Analysis I
This is a course meant to develop Electrical Engineering Circuit Analysis skills in DC and AC circuits. It includes circuit laws and theorems, mesh and node analysis. Natural and step response of RL, RC, and RLC circuits.
Pre: PHYS 222 or concurrent, MATH 321 or concurrent
Fall

EE 231 (3) Circuit Analysis II
Continuation of Circuit Analysis I to include special topics in circuit analysis.
Pre: EE 230 and EE 240, MATH 321, PHYS 222
Spring

EE 235 (1) Microprocessor Engineering Laboratory I
Use of development boards and assembly language programming to handle interrupts, interface with parallel I/O ports, memory, and timers. Experiments will involve signal and frequency measurements, data conversions, and interface design.
Pre: EE 106, EE 107, CS 200 and EE 235 taken concurrently
Fall

EE 240 (1) Evaluation of Circuits
Pre: EE 230 and concurrent with EE 235
Fall

EE 244 (2) Introduction to Digital Systems
Simple coding schemes, Boolean algebra fundamentals, elements of digital building blocks such as gates, flip-flops, shift registers, memories, etc.; basic engineering aspects of computer architecture.

EE 253 (1) Logic Circuits Lab
Laboratory support to complement EE 244. Use of laboratory instrumentation to measure characteristics of various logic circuits and digital subsystems. Experimental evaluation of digital logic devices and circuits including logic gates, flip-flops, and sequential machines.
Pre: EE 230 and concurrent with EE 244.
Spring

EE 254 (1) Digital and Circuits Lab
Laboratory support for EE 231 and EE 244. Experimental evaluation of AC and transient circuits, digital logic devices including logic gates, flip-flops, and sequential machines.
Pre: EE 230, EE 240 and concurrently with EE 231 and EE 244
Spring

EE 295 (3) Computer Hardware and Organization
This course introduces the computer engineering fundamentals on which current computer systems are based and includes Boolean algebra and simple logic circuits that describe the hardware of modern computer systems. Students gain a deeper understanding of computers by building and microprogramming their own machine.
Pre: CS 220 and EE 235
Spring

EE 298 (1-4) Topics
Varied topics in Electrical and Computer Engineering. May be repeated as topics change.
Pre: to be determined by course topic

EE 303 (3) Introduction to Solid State Devices
Introduction to crystal structure, energy band theory, conduction and optical phenomenon in semiconductors, metals and insulators. Study of equilibrium and non-equilibrium charge distribution, generation, injection, and recombination. Analysis and design of PN-junctions, (bipolar transistor, junction) and MOS field-effect transistors. Introduction to transferred electron devices and semiconductor diode laser.
Pre: PHYS 222, and MATH 321
Fall

EE 304 (1) Lab: Introduction to Solid State Devices
Laboratory support for EE 303. Experiments include resistivity and sheet resistance measurements of semiconductor material, probing material, probing of IC chips, PN-junction IV and CV measurements, BJT testing to extract its parameters, MOSFET testing and evaluating its parameters, cv-measurements of MOS structure, and familiarization with surface analysis tools.
Fall

EE 332 (3) Electronics I
Introduction to discrete and microelectronics circuits including analog and digital electronics. Device characteristics including diodes, BJTs, JFETs, and MOSFETs will be studied. DC bias circuits, small and large signal SPICE modeling and analysis and amplifier design and analysis will be discussed.
Pre: EE 231

EE 333 (3) Electronics II
The second course of the electronics sequence presenting concepts of feedback, oscillators, filters, amplifiers, operational amplifiers, hysteresis, bi-stability, and non-linear functional circuits. MOS and bipolar digital electronic circuits, memory, electronic noise, and power switching devices will be studied.
Pre: EE 332
Spring

EE 334 (3) Microprocessor Engineering II
A more advanced study of microprocessors and microcontrollers in embedded system design. Use of C language in programming, interrupt interfaces such as SPI, I2C, and CAN. External memory design and on-chip program memory protection are also studied.
Pre: EE 295
Fall

EE 336 (1) Principles of Engineering Design I
Electrical and computer engineering project and program management and evaluation techniques will be studied. Emphasis will be placed on the use of appropriate tools for planning, evaluation, and reporting on electrical and computer engineering projects.
Pre: Junior Standing
Fall

EE 337 (1) Principles of Engineering Design II
Application of the design techniques in the engineering profession. Electrical engineering project and program management and evaluation including computer assisted tools for planning and reporting, design-to-specification techniques and economic constraints.
Pre: EE 336
Spring
Course Description

EE 341 (3) Signals & Systems
Analysis of linear systems and signals in the time and frequency domain. Laplace and Fourier transforms. Z-transform and discrete Fourier transforms. Pre: EE 230. MATH 321 and PHYS 222
Fall

EE 342 (1) Electronics Laboratory
This lab is designed to accompany EE 332. The lab covers the experimental measurement and evaluation of diode, BJT, and MOS characteristics; various feedback topologies; oscillator and op-amp circuits; and rectifiers and filter circuits. Pre: EE 231 and EE 332 taken concurrently. Fall

EE 344 (1) Design & Evaluation of Microprocessors
Laboratory support for EE 334. Use of development boards and C Programming language to handle I/O devices, interrupts, and all peripheral functions. Multiple functions such as timers, A/D converters, I/O devices, interrupts, and serial modules will be used together to perform desired operations. Pre: Concurrent with EE 334 Fall

EE 350 (3) Engineering Electromagnetics

EE 353 (3) Communications Systems Engineering

EE 358 (3) Control Systems
Fall

EE 363 (1) Communication Systems Laboratory

EE 368 (1) Control Systems Laboratory
Laboratory support for EE 358. Experimental evaluation of basic control system concepts including transient response and steady state performance. Analog and digital computers. Pre: EE 341 and concurrent with EE 358 Spring

EE 381 (3) Digital System Design with Testability
Practical aspects of digital systems design and hardware testability will be presented in this course. Software tools and theoretical presentations will emphasize necessary concepts of digital design. Pre: EE 106, CS 220, and EE 295 Fall

Fall

EE 382 (1) Digital System Design with Testability Lab
Laboratory support for EE 381. Practical aspects of digital systems design and hardware testability will be presented through laboratory experiences. Pre: Concurrent with EE 381 Fall

EE 439 (3) Electronics for Non-Electrical Engineering Majors
Topics covered include power supplies, operational amplifiers and feedback circuits, linear and nonlinear circuits and applications, analog switches, digital logic gates and devices, A/D and D/A converters, microprocessors, and basic control systems. Pre: PHYS 221 and PHIL 222 Variable

EE 450 (3) Engineering Economics
Overview of accounting and finance and their interactions with engineering. Lectures include the development and analysis of financial statements, time value of money, decision making tools, cost of capital, depreciation, project analysis and payback, replacement analysis, and other engineering decision making tools. Pre: Advanced standing in the program Fall

EE 453 (3) Advanced Communications Systems Engineering
Behavior of analog systems and digital systems in the presence of noise, principles of digital data transmission, baseband digital modulation, baseband demodulation/detection, bandpass modulation and demodulation of digital signals. Channel coding, modulation and coding trade-offs, spread spectrum techniques, probability and information theory. Pre: EE 353 and EE 363 Fall

EE 463 (3) Advanced Digital System Design
Design of combinational and sequential systems and peripheral interfaces. Design techniques using MSI and LSI components in an algorithmic state machine; implementation will be stresses. Rigorous timing analysis transmission-line effects and metastability of digital systems will be studied. Pre: EE 244

EE 467 (1) Principles of Engineering Design III
The design and organization of engineering projects. Project proposals, reporting, feasibility studies, and interpretation. Specification preparation, interpretation, and control. Issues involving creativity, project planning and control, and intellectual property rights. Students enrolled in this course must initiate and complete a design project in a small team format. Pre: EE 337 and senior standing Fall

EE 471 (3) Advanced Control Systems
This course is a continuation of EE 358. Techniques for the analysis of continuous and discrete systems are developed. These techniques include pole placement, state estimation, and optimal control. Pre: EE 358 and EE 368 Fall

EE 472 (3) Digital Signal Processing
Develop design and analysis techniques for discrete signals and systems via Z-transforms, Discrete Fourier Transforms, implementation of FIR and IIR filters. The various concepts will be introduced by the use of general and special purpose hardware and software for digital signal processing. Pre: EE 341 Spring

EE 475 (3) Integrated Circuit Engineering
Introduction to theory and techniques of integrated circuit fabrication processes, oxidation, photolithography, etching, diffusion of impurities, ion implantation, epitaxy, metallization, material characterization techniques, and VLSI process integration, their design and simulation by SUPREM. Pre: EE 303 and EE 332 Fall
EE 476 (3) Antennas, Propagation, & Microwave Engineering
Principles of electromagnetic radiation, antenna parameters, dipoles, antenna arrays, long wire antennas, Microwave antennas, Mechanisms of radiowave propagation, scattering by rain, sea water propagation, guided wave propagation, periodic structures, transmission lines, microwave/millimeter wave amplifiers and oscillators, MIC & MMIC technology.
Pre: EE 350
Variable

EE 477 (1) Principles of Engineering Design IV
Completion of design projects and reports. Lectures on ethics, issues in contracting and liability, concurrent engineering, ergonomics and environmental issues, economics and manufacturability, reliability and product lifetimes. Lectures by faculty and practicing engineers.
Pre: EE 467 and Senior Standing
Spring

EE 479 (3) Superconductive Devices
Pre: EE 303
Variable

EE 480 (1) Integrated Circuit Fabrication Lab
Introduction to integrated circuit fabrication processes, device layout, mask design, and experiments related to wafer cleaning, etching, thermal oxidation, thermal diffusion, photolithography, and metallization. Fabrication of basic integrated circuit elements pn junction, resistors, MOS capacitors, BJT and MOSFET in integrated form. Use of analytic tools for in process characterization and simulation of the fabrication process by SUPREM.
Pre: Concurrent with EE 475
Fall

EE 481 (1) VLSI Design Laboratory
This laboratory accompanies EE 484. The laboratory covers the basics of layout rules, chip floor planning, the structure of standard cells and hierarchical design, parasitic elements, routing, and loading. Students will learn to design and layout standard cells as well as how to use these cells to produce complex circuits. The laboratory culminates with the individual design and layout of a circuit.
Pre: Concurrent with EE 484
Spring

EE 482 (3) Electromechanics
Electrical power and magnetic circuit concepts, switch-mode converters, mechanical electromechanical energy conversion, DC motor drives, feedback controllers, AC machines and space vectors, permanent magnet AC machines and drives, induction motors and speed control of induction motors, stepper motors.
Pre: EE 230
Fall

EE 484 (3) VLSI Design
Pre: EE 333
Spring

EE 487 (3) RF Systems Engineering
Pre: EE 353 and EE 363
Variable

EE 488 (2) Thermal Systems Engineering
Pre: PHYS 222 and EE 333
Variable

EE 491 (1-4) In-Service

EE 497 (1-6) Internship

EE 498 (1-4) Topics
Varied topics in Electrical and Computer Engineering. May be repeated as topics change. Prerequisite: to be determined by course topic

EE 499 (1-6) Individual Study