Biology

College of Science, Engineering & Technology
Department of Biological Sciences
242 Trafton Science Center S • 507-389-2786
Website: www.cset.mnsu.edu/biology/

Chair: Michael Bentley, Ph.D.

Lois Anderson, M.S.; Christopher Conlin, Ph.D.; Bradley Cook, Ph.D.; Geoff Goellner, Ph.D.; Marilyn Hart, Ph.D.; Penny Knoblich, DVM; Ph.D.; John D. Krenz, Ph.D.; Bethann Lavoie, Ph.D.; Alison Mahoney, Ph.D.; Gregg Marg, Ph.D.; Steven Mercurio, Ph.D.; Beth Proctor, Ph.D.; Christopher Ruhland, Ph.D.; Timothy Scott, Ph.D.; Robert Sorensen, Ph.D.; Daniel Toma, Ph.D.; Dorothy Wrigley, Ph.D.;

The Department of Biological Sciences offers programs for students preparing for careers in education, laboratory and field research, biotechnology, environmental sciences, clinical laboratory sciences, cytotechnology, food science technology and pre-professional programs including pre-medicine, and pre-veterinary medicine.

The biology major offers a core program intended to develop a common background in biology and additional upper level courses designed to provide specialized options. Students typically take a broad based general biology major or an emphasis in one of the following: general biology, cytotechnology, ecology, biomedical sciences, microbiology, plant science, toxicology, or zoology. Programs in biotechnology, environmental sciences, food technology and science teaching are also offered.

Admission to Major is granted by the department. Admission requirements are 32 earned semester credit hours including BIOL 105 and BIOL 106, with a grade of a “C” or better in both BIOL 105 and BIOL 106; and a minimum cumulative GPA of 2.00.

POLICIES/INFORMATION

P/N Grading Policy. All courses leading to a major or a minor in biology must be taken for letter grades. Any exception to this policy must be approved by the chairperson of the department. Refer to the College regarding required advising for students on academic probation.

GPA Policy. In programs where not specifically noted, a minimum GPA of 2.0 must be maintained in biological sciences. A minimum GPA of 2.6 in the sciences must be maintained to meet student teaching requirements.

Several biology scholarships are available for entering first year students and currently enrolled Minnesota State Mankato students who meet the requirements. Application deadline is March 31 of each year.

The Department of Biological Sciences offers a well-balanced summer school program. For details concerning the courses being offered consult the summer bulletin.

BIOLOGY BS

Students may elect to complete the general non-specialized biology major or select one of the alternative specialized options or emphases.

Required General Education
BIOL 105 General Biology I (4)
CHEM 201 General Chemistry I (5)
Math Requirement (Choose 3-4 credits)
MATH 113 Trigonometry (3)
MATH 115 Pre-calculus Mathematics (4)
MATH 121 Calculus I (4)

Major Common Core
BIOL 106 General Biology II (4)
BIOL 211 Genetics (4)
BIOL 215 General Ecology (4)
BIOL 301 Evolution (2)
BIOL 320 Cell Biology (4)
CHEM 202 General Chemistry II (5)
CHEM 320 Organic Chemistry I (5)

Major Restricted Electives

Physics Requirement (Choose 3-4 credits)
PHYS 101 Introductory Physics (3)
PHYS 211 Principles of Physics I (4)
PHYS 221 General Physics I (4)
Statistics Requirement: HLTH 475 helps satisfy the University’s requirement for 40 upper-division credits. (Choose 3 credits)
HLTH 475 Biostatistics (3)
STAT 154 Elementary Statistics (3)

(CHOSE 1 CLUSTER)

Physiology Requirement
Choose ONLY ONE of the four following pairs of courses (6 to 9 credits total).
Major Restricted Electives plus Major Unrestricted Electives must total at least 18 credits to fulfill the 40-credit major requirement. (Choose 8 credits)
BIOL 220 Human Anatomy (4)
BIOL 330 Principles of Human Physiology (4)
(Choose 8 credits)
BIOL 217 Plant Science (4)
BIOL 441 Plant Physiology (4)
(Choose 9 credits)
BIOL 270 Microbiology (4)
BIOL 476 Microbial Physiology and Genetics (5)
(Choose 6 credits)
BIOL 316 Animal Diversity (3)
BIOL 431 Comparative Animal Physiology (3)

Major Unrestricted Electives
Choose 9 to 12 credits from upper-division Biology courses. At least 7 credits must be from courses with lab components. Major Restricted Electives plus Major Unrestricted Electives must total at least 18 credits to fulfill the 40-credit major requirement.

General Electives
Recommended Support Courses (0 to 8 credits)
CHEM 360 Principles of Biochemistry (4)
CHEM 460 Biochemistry I (3)
CHEM 465 Biochemical Techniques I (1)

Other Graduation Requirements
Choose an additional 8 to 19 upper-division credits to meet graduation requirements.

Required Minor: None

BIOMEDICAL SCIENCES OPTIONS

The purpose of this option is to prepare the student for a career in biomedicine. The option fulfills the science course requirements for most medical, osteopathic, dental, and chiropractic schools as well as the science course requirements for graduate education in biomedicine. If you are interested in applying to a specific medical school, please contact that school for their specific requirements.

Required General Education
BIOL 105 General Biology I (4)
PHYS 211 Principles of Physics I (4)
(Choose 3-4 credits)
MATH 113 Trigonometry (3)
MATH 115 Pre-calculus Mathematics (4)
MATH 121 Calculus I (4)

2012-2013 Undergraduate Bulletin
Major Common Core
BIOL 106 General Biology II (4)
BIOL 211 Genetics (4)
BIOL 220 Human Anatomy (4)
BIOL 270 Microbiology (4)
BIOL 320 Cell Biology (4)
BIOL 330 Principles of Human Physiology (4)
BIOL 434 Development and Human Embryology (3)
CHEM 201 General Chemistry I (5)
CHEM 202 General Chemistry II (5)
CHEM 305 Analytical Chemistry (4)
CHEM 320 Organic Chemistry I (5)
PHYS 212 Principles of Physics II (4)

Major Restricted Electives
(Choose 4 credits)
CHEM 360 Principles of Biochemistry (4)
CHEM 460 Biochemistry I (3)
CHEM 465 Biochemical Techniques I (1)
(Choose 3-4 credits)
HLTH 475 Biostatistics (3)
MATH 121 Calculus I (4)
MATH 354 Concepts of Probability & Statistics (3)

Major Unrestricted Electives
(Choose 9 credits)
Choose at least one course with a laboratory. Choose a maximum of 4 credits each from BIOL 497 and BIOL 499.
BIOL 324 Neurobiology (3)
BIOL 410 Global Change Biology (3)
BIOL 417 Biology of Aging and Chronic Diseases (3)
BIOL 418 Macro and Microscopic Imaging (4)
BIOL 420 Diagnostic Parasitology (3)
BIOL 430 Hematology/Introduction to Immunology (4)
BIOL 433 Cardiovascular Physiology (3)
BIOL 435 Histology (4)
BIOL 438 General Endocrinology (3)
BIOL 452 Biological Instrumentation (3)
BIOL 460 Introduction to Toxicology (3)
BIOL 466 Principles of Pharmacology (3)
BIOL 474 Immunology (4)
BIOL 475 Medical Microbiology (4)
BIOL 479 Molecular Biology (4)
BIOL 497 Internship I (1-12)
BIOL 499 Individual Study (1-4)

General Electives
These courses in conjunction with other courses taken for this degree must produce a total of 40 credits of 300- and 400 level courses.

Required Minor: None.

CYTOTECHNOLOGY/CYTOGENETICS OPTION
A cytotechnologist is an allied health professional and is involved in the microscopic study of cells for evidence of disease and cancer. Cytotechnologists are trained to accurately identify precancerous, malignant, and infectious conditions using cytological techniques. The “Pap test” (an evaluation of cells from the uterine cervix) is the best known test in this field. The four-year curriculum consists of three years spent at the university completing the required courses and the fourth year is a 32 credit internship spent in professional education. Agencies participating in the cytotechnology program include, but are not limited to: Mayo School of Health Sciences in Rochester. Admission into the fourth-year hospital clinical internship is competitive. Therefore, admission to the program does not ensure placement into the fourth-year internship. The BS degree is awarded by the university after successful completion of the internship year. Graduates are then eligible to take the certifying examination. Cytotechnologists are employed in hospital laboratories, universities, and private laboratories.

NOTE: Due to the closure of the Cytogenetic Internship Program at Mayo Clinic, please consult with the advisor on the status of the degree in the Cytogenetic option.

Cytogenetics is the specialized area of laboratory medicine involving the study of normal and abnormal chromosomes and their relationship to human disease. Cytogenetic technologists analyze chromosomes using tissue cultures and preparations from peripheral blood, bone marrow, amniotic fluid, products of conception, and tumor samples. Cytogenetic technologists use fluorescent-labeled DNA to detect chromosome abnormalities associated with birth defects, retardation, infertility, miscarriage, and cancers. Fluorescence In Situ Hybridization or FISH has become the most rapidly growing area in cytogenetics. The four-year curriculum consists of three years spent at the university completing the required courses and the fourth year is a 32-credit internship spent in professional education. Admission into the fourth-year hospital clinical internship is competitive. Therefore, admission to the program does not ensure placement into the fourth-year internship. The BS degree is awarded by the university after successful completion of the internship year. Graduates are then eligible to take the certifying examination. Cytogenetic technologists are employed in hospitals, clinical laboratories, research laboratories, and cytogenetic-related biotechnology companies. Background checks may be required on all students admitted to Cytotechnology & Cytogenetics internship programs.

Required General Education
BIOL 270 Microbiology (4)
CHEM 201 General Chemistry I (5)
(BIOL 105 General Biology I (4)
BIOL 105W General Biology I (4)
(Choose 4 credits)
MATH 112 College Algebra (4)
MATH 115 Precalculus Mathematics (4)
MATH 121 Calculus I (4)

Major Common Core
BIOL 106 General Biology II (4)
BIOL 211 Genetics (4)
BIOL 220 Human Anatomy (4)
BIOL 320 Cell Biology (4)
CHEM 330 Principles of Human Physiology (4)
CHEM 202 General Chemistry II (5)
CHEM 320 Organic Chemistry I (5)

Major Restricted Electives
(Choose 4 credits)
CHEM 305 Analytical Chemistry (4)
CHEM 360 Principles of Biochemistry (4)
(Choose 3-4 credits)
BIOL 438 General Endocrinology (3)
BIOL 452 Biological Instrumentation (3)
BIOL 460 Introduction to Toxicology (3)
BIOL 466 Principles of Pharmacology (3)
BIOL 474 Immunology (4)
BIOL 475 Medical Microbiology (4)
BIOL 479 Molecular Biology (4)
BIOL 497 Internship I (1-12)
BIOL 499 Internship II (1-12)

Major Unrestricted Electives
(Choose 9 credits)
Choose at least one course with a laboratory. Choose a maximum of 4 credits each from BIOL 497 and BIOL 499.
BIOL 324 Neurobiology (3)
BIOL 410 Global Change Biology (3)
BIOL 417 Biology of Aging and Chronic Diseases (3)
BIOL 418 Macro and Microscopic Imaging (4)
BIOL 420 Diagnostic Parasitology (3)
BIOL 430 Hematology/Introduction to Immunology (4)
BIOL 433 Cardiovascular Physiology (3)
BIOL 435 Histology (4)
BIOL 438 General Endocrinology (3)
BIOL 452 Biological Instrumentation (3)
BIOL 460 Introduction to Toxicology (3)
BIOL 466 Principles of Pharmacology (3)
BIOL 474 Immunology (4)
BIOL 475 Medical Microbiology (4)
BIOL 479 Molecular Biology (4)
BIOL 497 Internship I (1-12)
BIOL 499 Internship II (1-12)

General Electives
These courses in conjunction with other courses taken for this degree must produce a total of 40 credits of 300- and 400 level courses.

Required Minor: None.

ECOLOGY OPTION
Ecology is the study of relationships between organisms and their environment. The option consists of fundamental courses in biology and related sciences, mid-level study in genetics, evolution, and statistics, and an array of upper-division electives that emphasize fieldwork, data analysis, and writing. Many students collaborate with faculty in their research or conduct independent research projects. Career titles available with this option include ecologist, naturalist, wildlife biologist, natural resource manager, fish biologist, marine biologist, conservational training or graduate school. For more information about the op-
tion and the ecology faculty, select “ecology” at the department page (see www.mnsu.edu/dept/biology).

Required General Education

BIOLOGY

- BIOL 105 General Biology I (4)
- PHYS 211 Principles of Physics I (4)

Math Requirement (Choose 3-4 credits)

- MATH 113 Trigonometry (3)
- MATH 115 Precalculus Mathematics (4)

Major Common Core

- BIOL 106 General Biology II (4)
- BIOL 211 Genetics (4)
- BIOL 215 General Ecology (4)
- BIOL 301 Evolution (2)
- BIOL 408 Vertebrate Ecology (4)
- BIOL 443 Plant Ecology (4)
- CHEM 201 General Chemistry I (5)
- ENG 271W Technical Communication (4)
- HLTH 475 Biostatistics (3)

Major Restricted Electives

Choose 1 Cluster

Physiology Requirement

- BIOL 320 Cell Biology (4)
- BIOL 431 Comparative Animal Physiology (3)

Microbial Physiology

- BIOL 270 Microbiology (4)
- BIOL 476 Microbial Physiology and Genetics (5)

Plant Physiology

- BIOL 217 Plant Science (4)
- BIOL 441 Plant Physiology (4)

Major Unrestricted Electives

Choose courses to total 40 credits in biology. Courses other than those listed are allowed with consent of your advisor. A limit of 4 total credits is allowed for BIO 492, BIO 497, & BIO 499 combined.

- BIOL 316 Animal Diversity (3)
- BIOL 404 Wetlands (4)
- BIOL 405 Fisheries Biology (3)
- BIOL 409 Advanced Field Ecology (4)
- BIOL 410 Global Change Biology (3)
- BIOL 412 Soil Ecology (4)
- BIOL 431 Comparative Animal Physiology (3)
- BIOL 432 Lake Ecology (4)
- BIOL 436 Animal Behavior (4)
- BIOL 441 Plant Physiology (4)
- BIOL 442 Flora of Minnesota (4)
- BIOL 460 Introduction to Toxicology (3)
- BIOL 472 Microbial Ecology and Bioremediation (4)
- BIOL 479 Molecular Biology (4)
- BIOL 492 Honors Research (1-3)
- BIOL 497 Internship I (1-12)
- BIOL 499 Individual Study (1-4)

Other Graduation Requirements

Choose an additional 13 to 17 upper-division credits (biology or non-biology) to meet the requirement of a minimum of 40 upper-division credits.

Required Minor: None.

MICROBIOLOGY OPTION

Microorganisms impact every area of life. The option exposes students to a variety of topics in microbiology and teaches numerous skills needed to work with microorganisms. Training in microbiology prepares students for employment in industry (ex. quality assurance, vaccine production) and government (ex. laboratory technicians). Currently, employment opportunities abound in applied areas of microbiology such as biological products/pharmaceuticals, food processing, environmental assessment. It also prepares a student for continuing education in microbiology, immunology, and cell and molecular biology. Students may elect to work on research projects with faculty who work in the areas of food microbiology, immunology, microbial genetics, and molecular biology.

Required for Option (12 credits)

- BIOL 105 General Biology I (4)
- CHEM 201 General Chemistry I (4)

Math Requirement (Choose 4 credits)

- MATH 112 College Algebra (4)
- MATH 121 Calculus I (4)

Major Common Core

- BIOL 106 General Biology II (4)
- BIOL 211 Genetics (4)
- BIOL 270 Microbiology (4)
- CHEM 202 General Chemistry II (5)
- CHEM 305 Analytical Chemistry (4)
- CHEM 320 Organic Chemistry I (5)

Major Restricted Electives

(Choose 4-5 credits)

- BIOL 476 Microbial Physiology and Genetics (5)
- CHEM 360 Principles of Biochemistry (4)
- CHEM 465 Biochemical Techniques I (1)

Major Unrestricted Elective

25 credits of electives must be taken. Biochemistry or BIOL 476 may be taken as an elective if not taken as part of the core.

- BIOL 420 Diagnostic parasitology (3)
- BIOL 452 Biological Instrumentation (3)
- BIOL 472 Microbial Ecology and Bioremediation (4)
- BIOL 474 Immunology (4)
- BIOL 475 Medical Microbiology (4)
- BIOL 478 Food Microbiology (4)
- BIOL 479 Molecular Biology (4)
- BIOL 499 Individual Study (1-4)

General Electives

HLTH 475 Biostatistics and MATH 121 Calculus I are strongly encouraged.

Other Graduation Requirements

Choose 2-3 additional upper division credits to meet graduate requirements.

Required Minor: None.

PLANT SCIENCE OPTION

The Plant Biology option includes the study of cells, genetics, anatomy, physiology, taxonomy, and ecology of terrestrial and aquatic vascular plants, mosses, algae and fungi. The option emphasizes plant structure and function, diversity, evolutionary and anatomical adaptations and interactions between plants and their environment. An option in plant sciences prepares undergraduate students for careers in education, biotechnology, field biology, pharmaceutical companies and government agencies. In addition, the option prepares students for Master’s and Doctoral degrees in Plant Science.

Required General Education

- BIOL 105 General Biology I (4)
- PHYS 211 Principles of Physics I (4)

Math Requirement (Choose 3-4 credits)

- MATH 113 Trigonometry (3)
- MATH 115 Precalculus Mathematics (4)

- CHEM 201 General Chemistry I (4)

Math Requirement (Choose 4 credits)

- MATH 112 College Algebra (4)
- MATH 121 Calculus I (4)

Major Common Core

- BIOL 106 General Biology II (4)
- BIOL 211 Genetics (4)
- BIOL 270 Microbiology (4)
- CHEM 202 General Chemistry II (5)
- CHEM 305 Analytical Chemistry (4)
- CHEM 320 Organic Chemistry I (5)

Major Restricted Electives

(Choose 4-5 credits)

- BIOL 476 Microbial Physiology and Genetics (5)
- CHEM 360 Principles of Biochemistry (4)
- CHEM 465 Biochemical Techniques I (1)

Major Unrestricted Elective

25 credits of electives must be taken. Biochemistry or BIOL 476 may be taken as an elective if not taken as part of the core.

- BIOL 420 Diagnostic parasitology (3)
- BIOL 452 Biological Instrumentation (3)
- BIOL 472 Microbial Ecology and Bioremediation (4)
- BIOL 474 Immunology (4)
- BIOL 475 Medical Microbiology (4)
- BIOL 478 Food Microbiology (4)
- BIOL 479 Molecular Biology (4)
- BIOL 499 Individual Study (1-4)

General Electives

HLTH 475 Biostatistics and MATH 121 Calculus I are strongly encouraged.

Other Graduation Requirements

Choose 2-3 additional upper division credits to meet graduate requirements.

Required Minor: None.
BIOLOGY

Major Common Core
- BIOL 106 General Biology II (4)
- BIOL 211 Genetics (4)
- BIOL 215 General Ecology (4)
- BIOL 217 Plant Science (4)
- BIOL 441 Plant Physiology (4)
- BIOL 442 Flora of Minnesota (4)
- CHEM 201 General Chemistry I (5)

Major Restricted Electives
(Choose One)
- CHEM 111 Chemistry of Life Processes (5)
- CHEM 202 General Chemistry II (5)

(Choose One)
- HLTH 475 helps satisfy the University’s requirement for 40 upper-level credits.
- See other graduation requirements
- HLTH 475 Biostatistics (3)
- STAT 154 Elementary Statistics (3)

Major Unrestricted Electives
Choose 12 credits from the following list of Biology courses to complete the required 40 credits for the major. The electives must include a minimum of two courses with laboratory components.
- BIOL 301 Evolution (2)
- BIOL 320 Cell Biology (4)
- BIOL 404 Wetlands (4)
- BIOL 409 Advanced Field Ecology (4)
- BIOL 410 Global Change Biology (3)
- BIOL 412 Soil Ecology (4)
- BIOL 432 Lake Ecology (4)
- BIOL 443 Plant Ecology (4)
- BIOL 445 Economic Botany (4)
- BIOL 451 Plant Biotechnology (4)
- BIOL 460 Introduction to Toxicology (3)
- BIOL 479 Molecular Biology (4)

Variable Credit Courses (Choose 0-4 credits)
A total of 4 credits from the following courses may be counted towards Electives.
- BIOL 492 Honors Research (1-3)
- BIOL 497 Internship I (1-12)
- BIOL 499 Individual Study (1-4)

General Electives (Recommended Support Courses 0-12 credits)
- ENG 271W Technical Communication (4)
- IT 100 Introduction to Computing and Applications (4)
- MATH 121 Calculus I (4)

Other Graduation Requirements
Choose 17 or 20 additional upper-level credits to meet the graduation requirement of 40 upper-level credits.

Required Minor: None.

TOXICOLOGY OPTION
Toxicology is the study of the harmful effects of chemicals, radiation, and other stressors on biological systems. This is a wide-ranging course of study, allowing students to connect their background on chemistry, biology, physics, mathematics, etc. to understand all aspects of how an exposure may or may not yield a toxic result. Then students can do elementary risk assessment and environmental or medical analyses. The purpose of this option is to train students in the theory and hands-on research techniques of an interdisciplinary biological science at the undergraduate level in a field where there are few programs in the United States. Since toxins can be antibiotics antiviral or other chemotherapeutic medications, antidotes, agricultural chemicals, industrial chemicals, radiation, or just stressors such as poor ergonomics, graduates can and have proceeded into research on testing of pharmaceuticals, pesticides, and environmental toxicology in industry, government, or academic institutions. Additionally, training in risk assessments leads to additional opportunities for statistical modeling, which is employed in the areas mentioned above and industrial hygiene.

Required General Education
- BIOL 105 General Biology I (4)
- CHEM 201 General Chemistry I (5)
- MATH 121 Calculus I (4)
- PHYS 211 Principles of Physics I (4)

Prerequisites to the Major
- BIOL 220 Human Anatomy (4)

Major Common Core
- BIOL 106 General Biology II (4)
- BIOL 211 Genetics (4)
- BIOL 215 General Ecology (4)
- BIOL 270 Microbiology (4)
- BIOL 330 Principles for Human Physiology (4)
- BIOL 460 Introduction to Toxicology (3)
- BIOL 461 Environmental Toxicology (4)
- BIOL 462 Toxicology Seminar (1)
- BIOL 464 Methods of Applied Toxicology (3)
- BIOL 465 Applied Toxicology Project (3)
- BIOL 466 Principles of Pharmacology (3)
- BIOL 467 Industrial Hygiene (3)
- CHEM 202 General Chemistry II (5)
- CHEM 305 Analytical Chemistry (4)
- CHEM 460 Biochemistry I (5)
- CHEM 461 Biochemistry II (3)
- CHEM 465 Biochemical Techniques I (1)
- CHEM 466 Biochemical Techniques II (2)
- HLTH 475 Biostatistics (3)

Required Minor: None.

ZOOGLOGY OPTION
Zoology is a major branch of the biological sciences that involves the study of animals. Study in this area focuses on organismal diversity, animal structures and the functions, genetics, development, evolution, behavior, and ecological interactions. Occupations that may be available to graduate include: Animal Husbandry, Museum/Zoo Guide, Animal Laboratory Technician, Animal Trainer, Pest Control Technician, Museum Curator, Entomologist, Environmental Consultant, Field Researcher, Science Writer, Physician, Veterinarian, Wildlife Rehabilitation, Zoo Keeper, and Zoologist. Advanced training in professional or graduate schools is required in many of these areas and acceptance for advanced training is competitive. Success in this career field typically requires: a thorough knowledge of general biology, the ability to work and relate with animals, proficiency in reading and writing the ability to collect and analyze data, and an interest in problem solving and decision making.

Required for Option (12 credits)
- BIOL 106 General Biology II (4)
- BIOL 211 Genetics (4)

Required General Education (13 credits)
- CHEM 201 General Chemistry I (5)
- MATH 121 Calculus I (4)
- PHYS 211 Principles of Physics I (4)

Recommended Support Courses (8 credits)
(Choose one)
- MATH 121 Calculus I (4)
Biology

Required Support Courses (8 credits)
(Choose one)
CHEM 111 Chemistry of Life Processes (5)
CHEM 202 General Chemistry II (5)
(Choose one)
STAT 154 Elementary Statistics (3)
HLTH 475 Biostatistics (3)

Core Courses (22-23 credits)
BIOL 215 General Ecology (4)
BIOL 301 Evolution (2)
BIOL 316 Animal Diversity (3)
BIOL 408 Vertebrate Ecology (4)
BIOL 431 Comparative Animal Physiology (3)
Choose two from the following:
BIOL 420 Diagnostic Parasitology (3)
BIOL 421 Entomology (3)
BIOL 436 Animal Behavior (4)
BIOL 438 General Endocrinology (3)

Recommended Support Courses (0 credits required)
IT 100 Introduction to Computing and Applications (4)
ENG 271W Technical Communication (4)
MATH 121 Calculus I (4)

Electives Courses (24 credits)
I. Choose at least six credits from the following Biology courses
BIOL 320
BIOL 403
BIOL 409
BIOL 410
BIOL 412
BIOL 420
BIOL 434
BIOL 435
BIOL 438
BIOL 470
BIOL 472
BIOL 479
BIOL 492#
BIOL 497#
BIOL 499#

Other electives may apply with advisor’s consent.

II. Choose at least 18 credits from non-Biology courses in consultation with your advisor.

Required Minor: None

LIFE SCIENCE TEACHING BS
See the SCIENCE TEACHING section of this bulletin.

Biology Minor

Minor Core
BIOL 106 General Biology II (4)
BIOL 211 Genetics (4)
(Choose 4 credits)
BIOL 105 General Biology I (4)
BIOL 105W General Biology I (4)

Minor Elective
In addition to the course chosen from the list below add any 200-level or above biology course to total 17 credits in the minor.
(Choose one course from the following)
BIOL 215 General Ecology (4)
BIOL 217 Plant Science (4)
BIOL 220 Human Anatomy (4)
BIOL 270 Microbiology (4)

COURSE DESCRIPTIONS

BIOL 100 (4) Our Natural World
Introductory course designed for students not majoring in science. Focuses on basic biological principles with special emphasis on the human species. Includes scientific problem solving, biodiversity, human and social aspects of biology, ecology, cellular processes and organ function, human reproduction, pre-natal development, and heredity. Lecture, laboratory, and small group discussions.
Fall, Spring
GE-3

BIOL 101 (2-4) Biological Perspectives
Students focus on specific biological perspectives, including environmental science, biology of women, biotechnology, human heredity, etc. May be repeated for credit under different sub-titles.
Fall, Spring

BIOL 102 (3) Biology of Women
An introduction to biological topics of special interest to women with emphasis on anatomic and physiologic changes over the course of a woman’s lifetime. Designed for students not majoring in science. Presents fundamental biologic concepts within this specialized context and provides opportunity to collect, evaluate, and analyze data.
Fall, Spring

BIOL 103W (3) Introduction to Biotechnology
An introductory course designed for students not majoring in science. Focuses on basic biological principles as applied to biotechnology. Includes basic natural science principles, scientific problem solving, and human and social aspects of biotechnology. Lecture, laboratory, and small group discussions.
Fall
WI, GE-3

BIOL 103W (3) Introduction to Biotechnology
An introductory course designed for students not majoring in science. Focuses on basic biological principles as applied to biotechnology. Includes basic natural science principles, scientific problem solving, and human and social aspects of biotechnology. Lecture, laboratory, and small group discussions.
Fall
WI, GE-3

BIOL 105 (4) General Biology I
Study of biological processes at the suborganismal level including cell chemistry, metabolism, reproduction, genetics, and complex tissue physiology. Laboratory and discussion sessions stress problem solving and experimental design.
Fall, Spring
GE-3

BIOL 105 (4) General Biology I
Study of biological processes at the suborganismal level including cell chemistry, metabolism, reproduction, genetics, and complex tissue physiology. Laboratory and discussion sessions stress problem solving and experimental design.
Fall, Spring
WI, GE-3

BIOL 106 (4) General Biology II
Study of biological processes at the organismal level including a survey of life forms (viruses, bacteria, protists, fungi, plants, and animals), their evolution, and ecology. Laboratory and discussion sessions stress problem solving and experimental design.
Pre: BIOL 105
Fall, Spring

BIOL 175 (1) Orientation to Clinical Laboratory Science
An introduction to the health care profession with special emphasis on clinical laboratory personnel. Course includes presentations by professionals in some of the major health care fields, especially medical technology. Includes lectures, field observations.
Spring
Biology

BIOL 211 (4) Genetics
Introduction to genetic analysis. Topics covered include those both classical and modern genetics: population genetics, molecular genetics, genetic manipulation of organisms and selection. Central to this course will be the primacy of the trait as the object of genetics and the development/refinement of the concept of the gene. Lab included.
Pre: BIOL 105, BIOL 106, and MATH 112
Fall, Spring, Summer

BIOL 215 (4) General Ecology
Principles of the study of relationships between organisms and the environment. Topics include flow of energy and materials, organism-level interactions, growth and evolution of populations, and community ecology. Field trips to prairie, lake, stream, and forest communities, training in data collection and analysis, use of equipment, and report writing. Lab included.
Pre: BIOL 105 and BIOL 106 or consent
Fall

BIOL 217 (4) Plant Science
Biology of plants including unique features of plant cells, life histories, metabolism, anatomy, physiology, and ecology. The course emphasizes plants’ remarkable adaptations to their environments, their diversity, and the vital roles they play in ecological interactions. For biology and environmental science majors and minors. Lab included.
Pre: BIOL 105 and BIOL 106 or consent
Fall

BIOL 220 (4) Human Anatomy
Systems approach to the structure of the human body. The course is designed for students majoring in biology or health related programs. Lab included.
Fall, Spring

BIOL 270 (4) Microbiology
An introduction to the general principles and methods used in the study of microorganisms. Lab included.
Pre: One BIOL course and one semester of chemistry from among CHEM 104, CHEM 106, CHEM 111, or CHEM 201
Fall, Spring, Summer
GE-3

BIOL 283 (1) MAX Scholar Seminar
This class provides MAX scholars with an opportunity to explore a set of topics related to achieving success in academic, professional and personal realms. Speakers will include faculty, graduate students, visiting researchers and industry members as well as student participants. NOTE: Credit does not apply to any major.
Pre: Recipient of a MAX scholarship or instructor consent.
Fall, Spring

BIOL 301 (2) Evolution
Evolution is a unifying theory of biology. Students are provided the history of evolutionary thought and the Darwinian revolution, evidence for evolution, mechanics of evolution, and an array of special topics such as speciation, molecular evolution, conservation, and extinction. Readings will include book chapters and journal articles. Lecture/discussion.
Pre: BIOL 105, BIOL 106, BIOL 211
Spring

BIOL 310 (4) Basics of Human Physiology
Principles of functions of human cells, organs, and systems with an emphasis on organ/system interactions. Designed for majors that do not require a strong medical and research emphasis. Includes an active learning laboratory to facilitate learning the complex lecture material.
Pre: BIOL 220, CHEM 104 or CHEM 106 or CHEM 111 or CHEM 201
Fall, Spring, Summer

BIOL 316 (3) Animal Diversity
A comprehensive phylogenetic survey of both invertebrate and vertebrate animals. Emphasis on evolutionary relationships among phyla, the evolution of organ systems, animal organization and function, animal adaptations, and zoogeographical considerations. Research and inquiry of animal unity and diversity will include using the Internet. Lab included.
Pre: BIOL 105 and BIOL 106
Fall

BIOL 320 (4) Cell Biology
An examination of eukaryotic cellular structure, organization and physiology. Lab included.
Pre: BIOL 105 and BIOL 106, BIOL 211
Fall

BIOL 324 (3) Neurobiology
Basic anatomy and physiology of the nervous system. The course is designed for students majoring in biology, psychology or health related programs.
Pre: BIOL 220
Fall

BIOL 330 (4) Principles of Human Physiology
Principles of functions of human cells, organs, and systems with an emphasis on organ/system interactions. This course is designed for students majoring in biology, chemistry, or related sciences, and medically-related areas. Includes a laboratory with a research and medical emphasis.
Pre: BIOL 220, CHEM 104 or CHEM 106 or CHEM 111 or CHEM 201
Fall, Spring, Summer

BIOL 380 (3) Blood Banking/Urinalysis
Basic understanding of the principles of immunohematology applied to the area of blood blanking including major blood group systems, principles for antigen/antibody detection and identification, donor blood collection, transfusion evaluation, theory of renal function in health and disease, specimen collection, handling, and processing, and components of routine urinalysis.
Spring

BIOL 402 (4) Stream Ecology
The structure and function of stream ecosystems are presented with emphasis on adaptations of organisms to stream life and connections between stream organisms, the aquatic environment, and the surrounding watershed. Includes lab, field work, and team projects.
Pre: BIOL 105, BIOL 106, BIOL 215 or consent
Summer

BIOL 403 (3) Conservation Biology
Applications of principles from ecology, genetics, behavior, demography, economics, philosophy, and other fields to the conservation and sustainable use of natural populations of plants and animals. Lectures and discussions address topics such as habitat fragmentation, parks and reserves, genetic diversity, population viability, and extinction.
Pre: BIOL 215 or consent
Spring

BIOL 404 (4) Wetlands
To provide students the values and functions of wetlands and to use wetlands as an example of the relationship of ecology to management, and the impact that classification systems have politically. Lab (fieldwork) included.
Pre: BIOL 105, BIOL 106, BIOL 215, or consent
Spring
Biology

BIOL 405 (3) Fisheries Biology
An introduction to fish biology and fisheries management, diversity, form and function in the aquatic environment, functional physiology, evolution and specification, identification and use of keys, ecology, and management topics. Pre: BIOL 105, BIOL 106, BIOL 215, or consent of instructor. Alt-Fall

BIOL 408 (4) Vertebrate Ecology
A field course in the ecology of birds, mammals, amphibians, reptiles, and fishes. Students are trained in sampling techniques such as mark-and-recapture, population size estimation and monitoring, and species identification of live and preserved specimens. Lectures encompass evolution and adoption, origins, energetics, mating systems, morphology, geographical distributions, and population-level phenomena. Lecture and Laboratory. Pre: BIOL 105, BIOL 106, BIOL 215 or consent. Fall

BIOL 409 (4) Advanced Field Ecology
A field course focused on the function and dynamics of various North American ecosystems. Emphases will be on natural history, critical thought, and experimental design. Students will be trained in a variety of soil, plant, and animal sampling techniques. Depending on enrollment, there may be additional costs (e.g., camping fees) for the course. Pre: BIOL 105, BIOL 106, BIOL 215 or consent. Fall

BIOL 410 (3) Global Change Biology
This class examines the effects of natural and human-induced changes in climate on terrestrial and marine ecosystems. The course focuses on the science behind global change issues that have biological, social, and economic implications. Pre: BIOL 105, BIOL 106, BIOL 215 or consent. Spring

BIOL 412 (4) Soil Ecology
Soil ecology will focus on the genesis and classification of soils, the physical properties of soil as they relate to habitat formation, niches, interactions that exist among soil organisms, human impact on soil systems relative to population pressures and management practices. Lab included. Pre: BIOL 105, BIOL 106, BIOL 215, or consent. Spring

BIOL 417 (3) Biology of Aging and Chronic Diseases
Emphasis is placed on the biomedical aspects of aging and chronic disease. The course is designed for students majoring in biology, gerontology programs, or other health related programs. Pre: BIOL 100 or BIOL 105. Fall, Spring

BIOL 418 (4) Macro and Microscopic Imaging
Properties and physical principles underlying biological images. The course provides a survey of macro-imaging techniques (such as x-ray tomography, magnetic resonance imaging, positron emission tomography, and ultrasound) and micro-imaging techniques (such as light microscopy, transmission and scanning electron microscopy, fluorescence microscopy, laser scanning confocal microscopy and atomic force microscopy). Pre: One Year of Physics. Fall

BIOL 419 (2-3) Special Topics in Instrumentation
Instruction in specialized biological instrumentation. Pre: BIOL 105 and BIOL 106. Fall

BIOL 420 (3) Diagnostic Parasitology
Clinically important parasites. Protozoans, Flukes, Tapeworms, Roundworms, Ticks, Mites and Insects. Designed for Medical Technology, Pre-Med, Pre-Vet and Biology majors. Identification, clinical disease, epidemiology and ecology are covered. Lab included. Pre: BIOL 100 or BIOL 105, BIOL 106 recommended. Spring

BIOL 421 (3) Entomology
Morphological, physiological, medical, and economic significance of insects. Pre: BIOL 105 and BIOL 106 or consent. ALT-Fall

BIOL 430 (4) Hematology/Introduction to Immunology
Collection, examination, evaluation, morphology, function and diseases of blood cells. Hemostasis/coagulation of blood. Immunology theory is presented. Lab included. Spring

BIOL 431 (3) Comparative Animal Physiology
A comparison of adaptation mechanisms, from cell to organ-system, used by animals in response to “changes in” environmental conditions such as oxygen, carbon dioxide, food availability, temperature, water, solutes, pressure and buoyancy. Pre: BIOL 105, BIOL 106 or consent. Fall

BIOL 432 (4) Lake Ecology
This course is an introduction to the physical, chemical, and biological characteristics and interactions of inland freshwater lakes. Labs will emphasize field work, including data collection from five local lakes, analysis, and discussion. ALT-Fall

BIOL 433 (3) Cardiovascular Physiology
This course is a functional study of the heart and circulatory system. Fall

BIOL 434 (3) Development and Human Embryology
Understanding the process of cell differentiation and development. These principles are then applied to the descriptive study of human embryology including the basis of congenital malformations. Pre: BIOL 100 or BIOL 105. Fall

BIOL 435 (4) Histology
Study of types, arrangements and special adaptations of human tissues. Lab included. Pre: BIOL 220. Spring

BIOL 436 (4) Animal Behavior
An exploration of behavioral strategy, communication, learning, and social systems of animals, with emphases placed on the causes, evolution, ecological implications, and function of behavior at the individual and population level. Lab included. Pre: BIOL 105, BIOL 106, BIOL 215. Spring

BIOL 438 (3) General Endocrinology
This course provides the basis for understanding hormones and the mechanisms of their actions in both the normal and pathological states. Sample topics to be included are diabetes, osteoporosis, hormones of reproduction and current social and medical issues related to the course. Pre: BIOL 100 or BIOL 105. Spring
BIOL 441 (4) Plant Physiology
Plant functions such as water relations, mineral nutrition, translocation, metabolism, photosynthesis, and protein metabolism, respiration, growth and development, phytotrophones, reproduction and environmental physiology. Lab included.
Pre: BIOL 105, BIOL 106, BIOL 217, one semester organic chemistry recommended.
Spring

BIOL 442 (4) Flora of Minnesota
Field identification of plants with emphasis on local flora. History, systematic, techniques, plant biogeography, methods of plant collection, preservation, preparation of herbarium specimens are covered. Lab and field trips included.

BIOL 443 (4) Plant Ecology
Expands upon general principles of ecology to focus on the factors that regulate the distribution and abundance of plants, analysis of plant populations, and dynamics of plant communities. Lecture and lab (fieldwork) included.
Pre: BIOL 105, BIOL 106, BIOL 215 or consent. BIOL 217 strongly recommended.
Fall

BIOL 445 (4) Economic Botany
We interact with plants every day and they’ve had a profound affect on human history and society. This course surveys the roles of plants in foods, beverages, medicines, drugs, poisons, fibers, fuels, building materials, ceremony, landscape, and more. Lecture, discussion, lab, and field trip. Open to non-science majors.
Pre: BIOL 100 or BIOL 106, or consent
Spring

BIOL 451 (4) Plant Biotechnology
Lecture/laboratory course that presents an integrated view of plant biology, crop science, and current issues in biotechnology. Course focuses on issues of global concern such as sustainable food production, biofuels, genetically modified crops, molecular pharming, and tissue culture.
Pre: BIOL 105, BIOL 106
Fall

BIOL 452 (3) Biological Instrumentation
The principle and operation of instruments and their application to biological research. Types of instrumentation examined include spectroscopic, chromatographic, electroanalytic, radiographic, and imaging. Laboratory Information Management Systems (LIMS) will also be examined. Emphasis is placed on GLP, GMP, and ISO 9000 practices.
Pre: BIOL 105, BIOL 106, or consent
Fall

BIOL 453 (4) Biological Engineering Analysis I
The application of engineering principles and skills as applied to fermentation and to biological product recovery.
Pre: BIOL 270 and one semester each of calculus, physics, and organic chemistry, taken concurrently with BIOL 456.
Fall

BIOL 454 (4) Biological Engineering Analysis II
Continuation of Biological Engineering Analysis I. The application of engineering principles and skills as applied to fermentation and to biological product recovery.
Pre: BIOL 453, taken concurrently with BIOL 457
Spring

BIOL 456 (3) Biotechnology Project/Laboratory I
Practical laboratory experience in biotechnology through the selection and development of a research project. Students are expected to spend an average of 12 hours per week on the project.
Pre: Concurrent enrollment in BIOL 453
Fall

BIOL 457 (3) Biotechnology Project/Laboratory II
Continuation of Biotechnology Project/Laboratory I. Practical laboratory experience in biotechnology through the selection and development of a research project. Students are expected to spend an average of 12 hours per week on the project.
Pre: BIOL 456, taken concurrently with BIOL 454
Spring

BIOL 460 (3) Introduction to Toxicology
A lecture course covering basic principles of toxicity evaluation in living organisms, mechanisms of responses to chemicals or physical agents within an overview of practical medical, environmental and science policy implications. Presentation of comparisons of specific organ and tissue reactions to toxins in a variety of species follow these introductory concepts.
Pre: BIOL 105, BIOL 106, and 1 year of General Chemistry
ALT-Fall

BIOL 461 (4) Environmental Toxicology
A lecture/laboratory course that focuses on anthropogenic and natural toxicants, mathematical modeling of the dispersion of chemical and physical agents in the environment, effects on species and ecosystems with a special section on aquatic risk assessment. The laboratory includes techniques in environmental toxicity and a genuine research project.
Pre: BIOL 460
ALT-Spring

BIOL 462 (1) Toxicology Seminar
A seminar course that involves critical evaluation of published studies in toxicology, student presentations of a selected published manuscript and requires students to write a paper on one aspect of the course’s topic area that semester. Topic areas vary each time the course is offered.
Pre: BIOL 105, BIOL 106, and General Chemistry
ALT-Fall

BIOL 464 (3) Methods of Applied Toxicology
A lecture/laboratory course focusing on the steps necessary to start a research project from project definition through methods testing and evaluation, and a final report that includes a project flow chart. Third year students will have senior and/or graduate mentors.
Pre: BIOL 105, BIOL 106, and General Chemistry
ALT-Fall

BIOL 465 (3) Applied Toxicology Project
A lecture/laboratory course where students perform all aspects of their own designed research topic in toxicology while critically evaluating the progress of other projects as well. Students will be expected to keep timelines or develop modified timelines as necessary. The inverted triangle approach of project design will be examined and then included in all designs.
Pre: BIOL 464
ALT-S

BIOL 466 (3) Principles of Pharmacology
A lecture course that examines mechanisms of drug action, physiological responses and adverse reactions from sensitivities or allergies through overdose.
Pre: BIOL 105, BIOL 106, and 1 year of General Chemistry
ALT-Spring

BIOL 467 (3) Industrial Hygiene
A lecture course that examines Minnesota State Mankato, as your own work place to develop reports on a selected group of chemical and physical hazards of the workplace. Evaluation methods and solutions to existing problems are developed with concise reporting skills.
Pre: BIOL 105, BIOL 106, and 1 year of General Chemistry
ALT-Fall

2012-2013 Undergraduate Bulletin
Biology

BIOL 472 (4) Microbial Ecology and Bioremediation
Role of microorganisms in soil, air, water, sewage processes as well as methods of measurement and detection. Special emphasis on the role of microorganisms in bioremediation. Lab included.
Pre: BIOL 105, BIOL 106, and BIOL 270
ALT-Spring

BIOL 474 (4) Immunology
Fundamental principles of humoral and cell mediated immunity and the application of these principles. Current experimental work in the different areas of immunology will be discussed. Lab included.
Pre: BIOL 105, BIOL 106, and BIOL 270
Fall

BIOL 475 (4) Medical Microbiology
This course will cover bacterial, fungal, and viral human pathogens: what diseases they cause, how they cause disease, and how humans defend against and prevent those diseases. In the laboratory the student will isolate and identify pathogenic microorganisms using microbiological, biochemical, and immunological techniques.
Pre: BIOL 270

BIOL 476 (5) Microbial Physiology and Genetics
This course presents the physiology and genetics of microorganisms emphasizing those aspects unique to bacteria and archa. Topics include: energy production; biosynthesis of small molecules and DNA, RNA, and proteins; the formation of cell walls and membranes; microbial differentiation and behavior; and the genetic and biochemical regulation of these processes. Lab included.
Pre: BIOL 105, BIOL 106, BIOL 270
Spring

BIOL 478 (4) Food Microbiology and Sanitation
The role microbes play in production and spoilage of food products, as prepared for mass market. Topics include: foodborne pathogens, epidemiology and control, essential principles in sanitation including Hazard Analysis/Critical Control Point and ISO 9000 requirements. Lab included.
Pre: BIOL 105, BIOL 106 and BIOL 270
Spring

BIOL 479 (4) Molecular Biology
This course will cover both eukaryotic and prokaryotic molecular biology including: DNA and RNA structure, transcription, regulation of gene expression, RNA processing, protein synthesis, DNA replication, mutagenesis and repair, recombination, and insertion elements. A number of important techniques used in recombinant DNA technology will be discussed and practiced.
Pre: BIOL 105, BIOL 106, or consent
Spring

BIOL 480 (3) Biological Laboratory Experiences for Elementary Teachers
Provides experience with a wide variety of biological laboratory exercises to prepare prospective elementary teachers. Emphasis is on building knowledge, skills, and confidence. The course will cover major biological concepts and environmental education through classroom-ready examples selected to illustrate each concept.
Fall, Spring

BIOL 481 (1) Lab Supervision and Maintenance
Experience in maintaining and supervising laboratories. For individuals desiring additional experience with students in laboratory situations.
Fall, Spring

BIOL 483 (1) MAX Scholar Seminar
This class provides MAX scholars with an opportunity to explore a set of topics related to achieving success in academic, professional and personal realms. Speakers will include faculty, graduate students, visiting researchers and industry members as well as student participants. Students will be required to participate in mentoring of lower division MAX scholarship recipients and provide written and oral presentations of various topics during the semester.
Pre: Recipient of a MAX scholarship or instructor consent.
Fall, Spring

BIOL 485 (4) Biology Teaching Methods and Materials
A basic science methods course designed to prepare prospective junior and senior high life science teachers. Course will cover science teaching methods and support materials as they apply to life science teaching situations.
Pre: 16 credits BIOL
Fall

BIOL 486 (3) Field-Based Teaching Methods and Materials
A lecture/laboratory course that provides opportunity for prospective junior and senior high life science teachers to observe, practice, and refine their teaching skills. Students will work in a school setting and experience actual classroom.
Pre: BIOL 485
Fall, Spring

BIOL 490 (1-4) Workshop
A variable topic course designed for a selected topic in Biology. Workshops provide an intensive learning experience on a new topic in the Biological Sciences and/or hands-on experiences in a current area not covered by other course offerings. The course involves background reading, demonstrations, and laboratory or field experiences.
Fall, Spring

BIOL 491 (1-4) In-Service
Fall, Spring

BIOL 492 (1-3) Honors Research
Fall, Spring

BIOL 493 (1-12) Cytotechnology/Cytogenetics Clinical Internship I
The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the respective areas of cytotechnology or cytogenetics. Instructor Permission
Fall, Spring

BIOL 494 (1-12) Cytotechnology/Cytogenetics Clinical Internship II
Continuation of Cytotechnology/Cytogenetics Clinical Internship I. The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the respective areas of cytotechnology or cytogenetics. Instructor Permission
Fall, Spring

BIOL 495 (1-12) Cytotechnology/Cytogenetics Clinical Internship III
Continuation of Cytotechnology/Cytogenetics Clinical Internship II. The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the respective areas of cytotechnology or cytogenetics. Instructor Permission
Fall, Spring

BIOL 496 (1-12) Cytotechnology/Cytogenetics Clinical Internship IV
Continuation of Cytotechnology/Cytogenetics Clinical Internship III. The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the respective areas of cytotechnology or cytogenetics. Instructor Permission
Fall, Spring

BIOL 497 (1-12) Internship I
Experience in applied biology according to a prearranged training program for a minimum of five 40-hour weeks.
Pre: Consent
Fall, Spring

2012-2013 Undergraduate Bulletin
BIOL 498 (1-12) Internship II
Experience in applied biology according to a prearranged training program for a minimum of five 40 hour weeks. Only four credits can be applied to the major.
Pre: Consent
Fall, Spring

BIOL 499 (1-4) Individual Study