Physics

The physics programs available to the student are designed to prepare the student for graduate study, for a career in industry or government, or for high school teaching. Degree requirements provide graduates with skills useful both in graduate study and in industry and business.

Admission to Major is granted by the department. Minimum University admission requirements are:

- a minimum of 32 earned semester credit hours.
- a minimum cumulative GPA of 2.00 ("C").

Contact the department for application procedures.

POLICIES/INFORMATION

GPA Policy. A minimum GPA of 2.0 in physics courses is required for graduation.

Refer to the College regarding required advising for students on academic probation.

P/N Grading Policy. All physics courses except PHYS 105 and PHYS 480 are open to P/N grading; however, a student majoring or minorin in physics must elect the grade option for all of the required courses.

A minimum of 25 percent of the required credits in physics must be taken at Minnesota State Mankato for both the major and the minor. Testing for credit by examination is available on a case-by-case basis as determined by the Physics and Astronomy Department chairperson.

Electives in physics may include AST 420 and/or AST 421. Four credits of 100-level courses may be allowed toward the BS teaching degree.

BS Degree, Double Major. Students majoring in physics often find a second major in mathematics or astronomy to be an attractive option. If the BS degree in physics is combined with a BS degree in mathematics, then the following math courses are recommended: MATH 345, MATH 422, MATH 425, and MATH 447.

PHYSICS BS

Degree completion = 120 credits

Students interested in physics preparation leading to professional opportunities or graduate study are encouraged to select this major.

Required General Education (8 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 121</td>
<td>Calculus I (4)</td>
<td></td>
</tr>
<tr>
<td>PHYS 221</td>
<td>General Physics I (4)</td>
<td></td>
</tr>
</tbody>
</table>

Major Common Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 110</td>
<td>Computer Science (4)</td>
<td></td>
</tr>
<tr>
<td>EE 230</td>
<td>Circuit Analysis I (3)</td>
<td></td>
</tr>
<tr>
<td>EE 240</td>
<td>Evaluation of Circuits (1)</td>
<td></td>
</tr>
<tr>
<td>MATH 122</td>
<td>Calculus II (4)</td>
<td></td>
</tr>
<tr>
<td>MATH 223</td>
<td>Calculus III (4)</td>
<td></td>
</tr>
<tr>
<td>MATH 247</td>
<td>Linear Algebra I (4)</td>
<td></td>
</tr>
<tr>
<td>MATH 321</td>
<td>Ordinary Differential Equations (4)</td>
<td></td>
</tr>
<tr>
<td>PHYS 222</td>
<td>General Physics II (3)</td>
<td></td>
</tr>
<tr>
<td>PHYS 223</td>
<td>General Physics III (3)</td>
<td></td>
</tr>
<tr>
<td>PHYS 232</td>
<td>General Physics II Laboratory (1)</td>
<td></td>
</tr>
</tbody>
</table>

PHYS 233 General Physics III Laboratory (1)
PHYS 335 Modern Physics I (3)
PHYS 336 Modern Physics II (3)
PHYS 441 Mechanics (4)
PHYS 447 Electricity and Magnetism I (3)
PHYS 448 Electricity and Magnetism II (3)
PHYS 457 Optics (3)
PHYS 461 Quantum Mechanics (4)
PHYS 465 Computer Applications in Physics (3)
PHYS 473 Statistical Physics (3)
PHYS 475 Advanced Laboratory (2)
PHYS 492 Seminar (1)

Major Unrestricted Electives (choose 4 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST 353</td>
<td>Photometry I (2)</td>
<td></td>
</tr>
<tr>
<td>AST 355</td>
<td>Astrometry (2)</td>
<td></td>
</tr>
<tr>
<td>AST 357</td>
<td>Spectroscopy (2)</td>
<td></td>
</tr>
<tr>
<td>AST 420</td>
<td>Stellar Astrophysics (3)</td>
<td></td>
</tr>
<tr>
<td>AST 430</td>
<td>Galactic Structure (3)</td>
<td></td>
</tr>
<tr>
<td>EE 303</td>
<td>Introduction to Solid State Devices (3)</td>
<td></td>
</tr>
<tr>
<td>EE 304</td>
<td>Lab: Introduction to Solid State Devices (1)</td>
<td></td>
</tr>
<tr>
<td>MATH 354</td>
<td>Concepts of Probability & Statistics (3)</td>
<td></td>
</tr>
<tr>
<td>MATH 411</td>
<td>Introduction to Complex Variables (4)</td>
<td></td>
</tr>
<tr>
<td>MATH 422</td>
<td>Partial Differential Equations (4)</td>
<td></td>
</tr>
<tr>
<td>MATH 470</td>
<td>Numerical Analysis I (4)</td>
<td></td>
</tr>
<tr>
<td>PHYS 417</td>
<td>Biophysics (2)</td>
<td></td>
</tr>
<tr>
<td>PHYS 453</td>
<td>Solid State Physics (3)</td>
<td></td>
</tr>
<tr>
<td>PHYS 493</td>
<td>Undergraduate Research (1-6)</td>
<td></td>
</tr>
<tr>
<td>PHYS 499</td>
<td>Individual Study (1-8)</td>
<td></td>
</tr>
<tr>
<td>STATS 354</td>
<td>Concepts of Probability & Statistics (3)</td>
<td></td>
</tr>
</tbody>
</table>

Required Minor: None.

PHYSICS MINOR

Required General Education (8 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 121</td>
<td>Calculus I (4)</td>
<td></td>
</tr>
<tr>
<td>PHYS 221</td>
<td>General Physics I (4)</td>
<td></td>
</tr>
</tbody>
</table>

Required Support Course (4 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 122</td>
<td>Calculus II (4)</td>
<td></td>
</tr>
</tbody>
</table>

Required for Minor (Core, 12 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 222</td>
<td>General Physics II (3)</td>
<td></td>
</tr>
<tr>
<td>PHYS 223</td>
<td>General Physics III (3)</td>
<td></td>
</tr>
<tr>
<td>PHYS 335</td>
<td>Modern Physics I (3)</td>
<td></td>
</tr>
<tr>
<td>PHYS 336</td>
<td>Modern Physics II (3)</td>
<td></td>
</tr>
</tbody>
</table>

Required Elective (2-4 credits)

Choose a minimum of one course from the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 441</td>
<td>Mechanics (4)</td>
<td></td>
</tr>
<tr>
<td>PHYS 447</td>
<td>Electricity & Magnetism I (3)</td>
<td></td>
</tr>
<tr>
<td>PHYS 457</td>
<td>Optics (3)</td>
<td></td>
</tr>
<tr>
<td>PHYS 465</td>
<td>Computer Applications in Physics (3)</td>
<td></td>
</tr>
<tr>
<td>PHYS 473</td>
<td>Statistical Physics (3)</td>
<td></td>
</tr>
<tr>
<td>PHYS 475</td>
<td>Advanced Laboratory (2)</td>
<td></td>
</tr>
</tbody>
</table>

PHYSICS SCIENCE TEACHING BS

Degree completion = 120 credits

General requirements for programs in teaching the sciences can be found in the SCIENCE TEACHING section of this bulletin.

Required General Education (3 credits)

Recommended General Education (22-23 credits)
Including MATH 121
Required General Science Core (31-33 credits)

Required Professional Education (30 credits)

Required for Major (Core, 21 credits)
MATH 122 Calculus II (4)
PHYS 335 Modern Physics I (3)
PHYS 336 Modern Physics II (3)
PHYS 381 Tutoring Physics (2)
PHYS 465 Computer Applications in Physics (3)
PHYS 482 Teaching Methods & Materials in Physical Science (4)
PHYS 493 Undergraduate Research (1-6) (2 credits required)

Electives (Minimum of 8 Credits)*
Students may use PHYS 221, PHYS 222, PHYS 223, PHYS 232 and PHYS 233 to fulfill their Physics Electives requirement only if PHYS 211 and PHYS 212 are completed successfully.

Alternatively, students with a strong interest in applying advanced mathematical skills to problems in physics are encouraged to choose a minimum of 8 credits* of higher level Physics or Mathematics as approved by the student’s advisor to fulfill the Physics Elective requirement.

*This is reduced to 4 credits if PHYS 221, PHYS 222, PHYS 223, PHYS 232 and PHYS 233 have been taken in place of PHYS 211 and PHYS 212 in partial fulfillment of the General Science Core requirements.

Students intending to teach physics in states other than Minnesota are advised to select the BS Physics major and use elective credits to satisfy the professional education course requirements. For additional information confer with the science teaching advisor.

COURSE DESCRIPTIONS

PHYS 100 (3) Cultural Physics
Self-paced format, open laboratory component. Includes the history, philosophy and growth of science from myth to the present. Included are readings on Galileo, Newton, the Industrial Revolution, and the modern scientific revolution. The relationship of science to art, archaeology, politics, weapons, medicine, technology, research and development, and the universe are discussed. Lab included. Fall, Spring GE-3

PHYS 101 (3) Introductory Physics
A one semester course which covers the basic principles of physics on a conceptual level and with a minimal amount of math. The course provides an understanding of natural processes and their applications. Topics generally include mechanics, simple machines, atomic structure, heat, light and sound. Lecture and laboratory components. Fall, Spring GE-3

PHYS 102 (3) Physics in the World Around Us
A one semester course which covers the basic principles of physics on a conceptual level. The course provides an understanding of natural processes and their applications to technology (or how things work!), including the greenhouse effect and nuclear power. Lecture only. Variable GE-3

PHYS 105 (3) Time, Atomic Clocks, and Relativity
Self-paced format. Includes readings on time; telling time from sundials to atomic clocks; Albert Einstein (a biography of the primary developer of the Theory of Relativity); and the Theory of Relativity. All the readings are written to be understood by non-scientists. Fall, Spring GE-3

PHYS 107 (3) Physics of Flight
A one semester course which covers the basic principles of physics and flying on a conceptual level. Minimal math will be required. The course provides an understanding of physics and how it applies to the technology of flight. Topics include lift and drag; power plants and propulsion; stability; control; aircraft performance and history; subsonic and supersonic aerodynamics. Intended for students interested in aviation. Lecture, discussion, guided experiences at the University and at the Mankato airport. Variable GE-3

PHYS 110 (3) Physics and Our Audio Environment
A one semester course which covers the basic principles of physics as they apply to audio systems, their specifications, and our audio environment. Presented at a conceptual level. Lecture and laboratory. Variable GE-3

PHYS 211 (4) Principles of Physics I
General background in physical concepts for those who do not plan advanced study in physics or engineering. Topics include mechanics, fluids, heat and thermodynamics. Lecture and laboratory. Pre: Either MATH 112 and MATH 113, or MATH 115; and high school physics or PHYS 101. Fall, Spring GE-2, GE-3

PHYS 212 (4) Principles of Physics II
Includes waves and sound, electricity and magnetism, light and optics, and topics in modern physics. Lecture and laboratory. Pre: PHYS 211 Fall, Spring

PHYS 221 (4) General Physics I
Designed for science and engineering students. Caculus-based physics. Covers elementary mechanics including kinematics, statics, equilibrium and dynamics of particles, work and energy, rotational motion, gravitation, and oscillation. Lecture and laboratory. Pre: MATH 121 with a “C” or better; and high school physics or PHYS 101 Fall, Spring GE-2, GE-3

PHYS 222 (3) General Physics II
Designed for science and engineering students. Calculus-based physics. Covers electrical charge and field; magnetic field and its sources; current and resistance; simple DC and AC circuits; and electromagnetic induction. Lecture only. (Associated laboratory course is PHYS 232.) Pre: MATH 122 with a “C” or better; and PHYS 221 with a “C” or better. Fall, Spring

PHYS 223 (3) General Physics III
Designed for science and engineering students. Calculus-based physics. Covers fluids, thermodynamics, mechanical and sound waves, geometrical optics, physical optics, and modern physics. Lecture only. (Associated laboratory course is PHYS 233.) Pre: MATH 122 with a “C” or better; and PHYS 221 with a “C” or better. Spring

PHYS 232 (1) General Physics II Laboratory
Designed for science and engineering students. Laboratory course accompanying PHYS 222. Experiments involving electric and magnetic fields, electric potential, electric and magnetic forces, and simple circuits. Laboratory only. Pre: PHYS 221 with a “C” or better; and PHYS 222 or concurrent. Fall, Spring

PHYS 233 (1) General Physics III Laboratory
Designed for science and engineering students. Laboratory course accompanying PHYS 223. Experiments involving fluids, thermodynamics, mechanical waves,
PHYS 435 (3) Modern Physics I
Pre: MATH 122; (PHYS 222 and concurrently with PHYS 223) or PHYS 212. Spring

PHYS 436 (3) Modern Physics II
Topics include the basics of molecular structure and spectra, classical and quantum statistical physics, solid state physics, nuclear physics, and particle physics. The lab component will teach the operation of various radiation detectors, and use them to study the interaction of radiation with matter.
Pre: PHYS 335 Fall

PHYS 381 (1-3) Tutoring Physics
Supervised experience as an instructional assistant. Must demonstrate ability in basic physics.
Pre: Consent Variable

PHYS 404 (2) Physics and Society
Relations between physics and other intellectual communities: e.g., philosophy, humanities, social sciences, the arts.
Pre: Consent Variable

PHYS 417 (2) Biophysics
This course bridges the gap between introductory physics and its application to the life and biomedical sciences. Topics include fluid flow, membrane transport, nerve conduction, imaging methods including MRI, CT, and nuclear imaging, radiotherapy, and health physics.
Pre: MATH 121, PHYS 212 or PHYS 222 Variable

PHYS 441 (4) Mechanics
Rectilinear motion of a particle, general motion of a particle in three dimensions, Newtonian mechanics including harmonic oscillations, forced oscillations, central forces and orbital motion, collisions, noninertial reference systems, dynamics of a system of particles, rigid body motion, Lagrangian and Hamiltonian mechanics, normal coordinates.
Pre: PHYS 222 or PHYS 223; and MATH 321 or consent. Fall

PHYS 447 (3) Electricity & Magnetism I
Electrostatic fields, magnetostatic fields, steady currents, electromagnetic induction. Review of vector algebra.
Pre: MATH 223 and MATH 321 and PHYS 222 Fall

PHYS 448 (3) Electricity & Magnetism II
Electromagnetic waves, propagation and radiation of waves, electrodynamics and relativity.
Pre: PHYS 223 and PHYS 447 Spring

PHYS 453 (3) Solid State Physics
Atoms in crystals, wave in crystals, thermal vibrations of the crystal lattice, free electron model, band theory of solids, semiconductors and PN junctions, magnetism, and superconductivity.
Pre: PHYS 355 Variable

PHYS 457 (3) Optics
Geometric optics, wave optics, properties of light and matter, optics of transformations, and quantum optics. Lecture and laboratory.
Pre: MATH 122 and PHYS 223 ODD-Spring

PHYS 461 (4) Quantum Mechanics
A systematic development of foundations of quantum mechanics. Observables, operators, state functions, expectation values. Matrix formulation of eigenvalue problems. The hydrogen atom, electron spin, angular momentum, and perturbation theory.
Pre: PHYS 335, PHYS 441, MATH 247, MATH 321 Fall

PHYS 465 (3) Computer Applications in Physics
Numerical solutions of physics problems and computer simulations of physical systems. Lecture and laboratory.
Pre: MATH 122, CS 110 and PHYS 222 or PHYS 223. Fall

PHYS 473 (3) Statistical Physics
Fundamental principles of statistical physics, including theory of probability, kinetic theory of transport process, entropy, classical and quantum statistical ensembles, Bose and Fermi systems. Applications to thermodynamics and magnetic properties of solids.
Pre: MATH 321 and PHYS 223 Alt-Spring

PHYS 475 (2) Advanced Laboratory
Experiments in modern physics, including solid-state physics and optics. Requires more independent work than introductory laboratories.
Pre: PHYS 336 or consent Spring

PHYS 480 (3) Lab Experiences in Physical Science
For prospective teachers in elementary schools. Topics include weather, weather forecasting and record keeping, simple machines, electricity, chemistry, sound, light, and others. May not count as a physics elective. Not available for P/N grading. Fall, Spring

PHYS 482 (4) Teaching Methods and Materials in Physical Science
Current methods of teaching all physical sciences with emphasis on physics and chemistry. For students planning to teach at a middle school, secondary school, college, or a university.
Pre: one year of chemistry and one year of physics, or consent Spring

PHYS 484 (2) Middle/Junior High Science Teaching
Current methods of teaching all sciences with emphasis on physical science, physics, chemistry, and earth science.
Pre: Majority of required courses completed, or consent Variable

PHYS 490 (2-4) Workshop
A short course devoted to a specific topic in physics. May be repeated for credit on each new topic.
Variable

PHYS 491 (1) In-Service
A course designed to upgrade the qualifications of persons on-the-job.
Variable

PHYS 492 (1) Seminar
Students will attend research seminars presented by faculty in the department, or speakers from other institutions. Students also make and critique presentations made by themselves and other students. May be repeated for credit.
Pre: Completed at least two upper division physics courses. Spring
PHYS 493 (1-6) Undergraduate Research
Pre: Consent
Variable

PHYS 495 (1-2) Selected Topics
A course in an area of physics not regularly offered. Topic and credit assigned by department each time offered.
Pre: PHYS 335 and PHYS 336
Variable

PHYS 497 (1-16) Internship
Provides a student with the opportunity to gain expertise and experience in a special field under the supervision of a qualified person.
Pre: Usually Sr. standing
Variable

PHYS 499 (1-8) Individual Study
Special arrangements must be made with an appropriate faculty member of the department office. May be repeated for credit on each new topic.
Pre: Consent
Variable