Students may elect to complete the general, non-specialized biology major or select one of the alternative specialized options or emphases. All emphases require BIOL 105, BIOL 106, BIOL 211, CHEM 201, and ENG 271W.

Math Requirement (choose 3-4 credits)
- MATH 113 Trigonometry (3)
- MATH 115 Precalculus Mathematics (4)
- MATH 121 Calculus I (4)

Physics Requirement (choose 3-4 credits)
- PHYS 101 Introductory Physics (3)
- PHYS 211 Principles of Physics I (4)
- PHYS 221 General Physics I (4)

Statistics Requirement (choose 3 credits)
- HLTH 475 Biostatistics (3)
- Stat 154 Elementary Statistics (3)

Emphasis Common Core (choose 20 credits)
- BIOL 215 General Ecology (4)
- BIOL 301 Evolution (2)
- BIOL 320 Cell Biology (4)
- CHEM 202 General Chemistry II (5)
- CHEM 322 Organic Chemistry I (4)
- CHEM 333 Supplemental Organic Functional Group Chemistry (1)

Recommended Support Courses (choose 0-8 credits)
- CHEM 360 Principles of Biochemistry (4)
- CHEM 460 Biochemistry I (3)
- CHEM 465 Biochemical Techniques I (1)

Required Minor: None

Major Emphasis: Biomedical Sciences
The purpose of this option is to prepare the student for a career in biomedicine. The emphasis fulfills the science course requirements for most medical, osteopathic, dental, and chiropractic schools as well as the science course requirements for graduate education in biomedicine. If you are interested in applying for a specific medical school, please contact that school for their specific requirements. All emphases require BIOL 105, BIOL 106, BIOL 211, CHEM 201, and ENG 271W.

Math Requirement (choose 3-4 credits)
- MATH 113 Trigonometry (3)
- MATH 115 Precalculus Mathematics (4)
- MATH 211 Principles of Physics I (4)

Recommended Support Courses (choose 0-8 credits)
- CHEM 360 Principles of Biochemistry (4)
- CHEM 460 Biochemistry I (3)
- CHEM 465 Biochemical Techniques I (1)

Required Minor: None

Major Emphasis: General, Non-Specialized
Students may elect to complete the general, non-specialized biology major or select one of the alternative specialized emphases. All emphases require BIOL 105, BIOL 106, BIOL 211, CHEM 201, and ENG 271W.
Emphasis Common Core (choose 37 credits)
BIOL 220 Human Anatomy (4)
BIOL 270 Microbiology (4)
BIOL 320 Cell Biology (4)
BIOL 330 Principles of Human Physiology (4)
BIOL 424 Developmental Biology (3)
CHEM 202 General Chemistry II (5)
CHEM 305 Analytical Chemistry (4)
CHEM 322 Organic Chemistry I (4)
CHEM 323 Supplemental Organic Functional Group Chemistry (1)
PHYS 212 Principles of Physics II (4)

Emphasis Required General Education (choose 4 credits)
MATH 112 College Algebra (4)
MATH 113 Trigonometry (3)
MATH 115 Precalculus Mathematics (4)
MATH 121 Calculus I (4)

Emphasis Required Support Courses (choose 13 credits)
Choose from the following to total at least 13 additional credits in Chemistry.
CHEM 202 General Chemistry II (5)
CHEM 305 Analytical Chemistry (4)
CHEM 322 Organic Chemistry I (4)
CHEM 323 Supplemental Organic Functional Group Chemistry (1)
CHEM 360 Principles of Biochemistry (4)

Emphasis Core Courses (choose 16 credits)
BIOL 220 Human Anatomy (4)
BIOL 270 Microbiology (4)
BIOL 320 Cell Biology (4)
BIOL 330 Principles of Human Physiology (4)

Professional Education (choose 32 credits)
BIOL 493 Cytotechnology Clinical Internship I (1-12)
BIOL 494 Cytotechnology Clinical Internship II (1-12)
BIOL 495 Cytotechnology Clinical Internship III (1-12)
BIOL 496 Cytotechnology Clinical Internship IV (1-12)

Major Emphasis: Cytotechnology
A cytotechnologist is an allied health professional and is involved in the microscopic study of cells for evidence of disease and cancer. Cytotechnologists are trained to accurately identify precancerous, malignant, and infectious conditions using cytological techniques. The “Pap test” (an evaluation of cells from the uterine cervix) is the best known test in this field. The “Pap test” is an evaluation of cells from the uterine cervix using cytological techniques. The best known test in this field. The four-year curriculum consists of three years spent at the university completing the required courses and the fourth year is a 32 credit internship spent in professional education. Agencies participating in the cytotechnology program include, but are not limited to: Mayo School of Health Sciences in Rochester, MN. Admission into the fourth year hospital clinical internship is competitive. Therefore, admission to the program does not ensure placement into the fourth year internship. The BS degree is awarded by the university after successful completion of the internship year. Graduates are then eligible to take the certifying examination. Cytotechnologists are employed in hospital laboratories, universities, and private laboratories. Adjunct faculty at the clinical sites include: Kara Hansing, CT (ASCP). Students accepted into the clinical internship will be responsible for: Proof of Medical / Hospitalization / Health Insurance; Health Physical Exam; Tuberculosis (TB) testing; and Proof of Immunization which may include the following: Hepatitis B, Measles, Mumps, Rubella, Tetanus, Chickenpox (Varicella), and Influenza. Students may also be required to submit to Drug Screen Testing. Internship sites are required by law to do Background Checks on all students admitted to their cytotechnology programs. All emphases require BIOL 105, 106, 211, CHEM 201, and ENG 271W.

Major Emphasis: Ecology
Ecology is the study of relationships between organisms and their environment. The emphasis consists of fundamental courses in biology and related sciences, mid-level study in genetics, evolution, and statistics, and an array of upper-division electives that emphasize fieldwork, data analysis, and writing. Many students collaborate with faculty in their research or conduct independent research projects. Career titles available with this emphasis include ecologist, naturalist, wildlife biologist, natural resource manager, fish biologist, marine biologist, conservational training or graduate school. For more information about the emphasis and the ecology faculty, select “ecology” at the department page (see www.mnsu.edu/dept/biology). All emphases require BIOL 105, BIOL 106, BIOL 211, CHEM 201, and ENG 271W.

Emphasis Required General Education Courses (COMPLETE ONE GROUP)

Animal Physiology
BIOL 316 Animal Diversity (3)
BIOL 431 Comparative Animal Physiology (3)

Microbial Physiology
BIOL 270 Microbiology (4)
BIOL 476 Microbial Physiology and Genetics (5)
BIOL 474 Immunology (4)
BIOL 472 Microbial Ecology and Bioremediation (4)
BIOL 452 Biological Instrumentation (3)
BIOL 420 Diagnostic Parasitology (3)

Emphasis Unrestricted Electives
Choose courses to total 40 credits in biology. Courses other than those listed are allowed with consent of your advisor. A limit of 4 total credits is allowed from BIOL 492, BIOL 497, and BIOL 499 combined.

BIOL 320 Cell Biology (4)
BIOL 404 Wetlands (4)
BIOL 405 Fisheries Biology (3)
BIOL 409 Advanced Field Ecology (4)
BIOL 410 Global Change Biology (3)
BIOL 412 Soil Ecology (4)
BIOL 431 Comparative Animal Physiology (3)
BIOL 432 Lake Ecology (4)
BIOL 436 Animal Behavior (4)
BIOL 441 Plant Physiology (4)
BIOL 442 Flora of Minnesota (4)
BIOL 460 Introduction to Toxicology (3)
BIOL 472 Microbial Ecology and Bioremediation (4)
BIOL 479 Molecular Biology (4)
BIOL 492 Honors Research (1-3)
BIOL 497 Internship I (1-12)
BIOL 499 Individual Study (1-4)

Required Minor: None.

Major Emphasis: Microbiology
Microorganisms impact every area of life. The emphasis exposes students to a variety of topics in microbiology and teaches numerous skills needed to work with microorganisms. Training in microbiology prepares students for employment in industry (ex. quality assurance, vaccine production) and government (ex. laboratory technicians). Currently, employment opportunities abound in applied areas of microbiology such as biological products/pharmaceuticals, food processing, environmental assessment. It also prepares a student for continuing education in microbiology, immunology, and cell and molecular biology. Students may elect to work on research projects with faculty who work in the areas of food microbiology, immunology, microbial genetics, and molecular biology. All emphases require BIOL 105, BIOL 106, BIOL 211, CHEM 201, and ENG 271W.

Math Requirement (choose 3-4 credits)
MATH 112 College Algebra (4)
MATH 113 Trigonometry (3)
MATH 115 Precalculus Mathematics (4)
MATH 121 Calculus I (4)

Emphasis Common Core (choose 18 credits)
BIOL 270 Microbiology (4)
CHEM 202 General Chemistry II (5)
CHEM 305 Analytical Chemistry (4)
CHEM 322 Organic Chemistry I (4)
CHEM 323 Supplemental Organic Functional Group Chemistry (1)

Emphasis Restricted Electives (choose 4-5 credits)
BIOL 476 Microbial Physiology and Genetics (5)
CHEM 360 Principles of Biochemistry (4)
CHEM 460 Biochemistry I (3)
CHEM 465 Biochemical Techniques I (1)

Emphasis Unrestricted Electives (choose 25 credits)
BIOL 476, CHEM 360, CHEM 460, and CHEM 465 can satisfy this category
IF they are not used in the Emphasis Restricted Electives.
BIOL 420 Diagnostic Parasitology (3)
BIOL 452 Biological Instrumentation (3)
BIOL 472 Microbial Ecology and Bioremediation (4)
BIOL 474 Immunology (4)

BIOL 475 Medical Microbiology (4)
BIOL 476 Microbial Physiology and Genetics (5)
BIOL 478 Food Microbiology and Sanitation (4)
BIOL 479 Molecular Biology (4)
BIOL 497 Internship I (1-12)
BIOL 499 Individual Study (1-4)

Recommended General Electives (choose 0-7 credits)
HLTH 475 Biostatistics (3)
MATH 121 Calculus I (4)

Required Minor: None.

Major Emphasis: Plant Science
The Plant Science emphasis includes the study of cells, genetics, anatomy, physiology, taxonomy, and ecology of terrestrial and aquatic vascular plants, mosses, algae and fungi. The course emphasizes plant structure and function, diversity, evolutionary and anatomical adaptations and interactions between plants and their environment. An emphasis in plant sciences prepares undergraduate students for careers in education, biotechnology, field biology, pharmaceutical companies and government agencies. In addition, the emphasis prepares students for Master’s and Doctoral degrees in Plant Science. All emphases require BIOL 105, BIOL 106, BIOL 211, CHEM 201, and ENG 271W.

Physics Requirement (choose 4 credits)
PHYS 211 Principles of Physics I (4)

Math Requirement (choose 3-4 credits)
MATH 113 Trigonometry (3)
MATH 115 Precalculus Mathematics (4)

Emphasis Common Core (choose 20 credits)
BIOL 215 General Ecology (4)
BIOL 217 Plant Science (4)
BIOL 441 Plant Physiology (4)
BIOL 442 Flora of Minnesota (4)
BIOL 443 Plant Ecology (4)

Emphasis Restricted Electives
Chemistry Requirement (choose one course)
CHEM 111 Chemistry of Life Processes (5)
CHEM 202 General Chemistry II (5)

Statistics Requirement (choose one course)
HLTH 475 Biostatistics (3)
STAT 154 Elementary Statistics (3)

Emphasis Unrestricted Electives
(choose at least 12 credits from the following list of electives)
At least two of the courses must have laboratory components. A MAXIMUM of 4 credits may be selected from BIOL 492, BIOL 497, and BIOL 499 combined.
BIOL 301 Evolution (2)
BIOL 320 Cell Biology (4)
BIOL 404 Wetlands (4)
BIOL 409 Advanced Field Ecology (4)
BIOL 410 Global Change Biology (3)
BIOL 412 Soil Ecology (4)
BIOL 432 Lake Ecology (4)
BIOL 451 Plant Biotechnology (4)
BIOL 460 Introduction to Toxicology (3)
BIOL 479 Molecular Biology (4)
BIOL 492 Honors Research (1-3)
BIOL 497 Internship I (1-12)
BIOL 499 Individual Study (1-4)

Recommended Support Courses
IT 100 Introduction to Computing and Applications (4)
MATH 121 Calculus I (4)

Required Minor: None.
Major Emphasis: Toxicology
Toxicology is the study of the harmful effects of chemicals, radiation, and other stressors on biological systems. This is a wide-ranging course of study, allowing students to connect their background on chemistry, biology, physics, mathematics, etc. to understand all aspects of how an exposure may or may not yield a toxic result. Then students can do elementary risk assessment and environmental or medical analyses. The purpose of this emphasis is to train students in the theory and hands-on research techniques of an interdisciplinary biological science at the undergraduate level in a field where there are few programs in the United States. Since toxins can be antibiotics, antiviral, or other chemotherapeutic medications, antidotes, agricultural chemicals, industrial chemicals, radiation, or just stressors such as poor ergonomics, graduates can and have proceeded into research and testing of pharmaceuticals, pesticides, and environmental toxicology in industry, government, or academic institutions. Additionally, training in risk assessments leads to additional opportunities for statistical modeling, which is employed in the areas mentioned above and industrial hygiene. All emphases require BIOL 105, BIOL 106, BIOL 211, CHEM 201, and ENG 271W.

Emphasis Required General Education
MATH 121 Calculus I (4)
PHYS 211 Principles of Physics I (4)

Emphasis Common Core
BIOL 215 General Ecology (4)
BIOL 220 Human Anatomy (4)
BIOL 270 Microbiology (4)
BIOL 330 Principles of Human Physiology (4)
BIOL 460 Introduction to Toxicology (3)
BIOL 461 Environmental Toxicology (4)
BIOL 462 Toxicology Seminar (1)
BIOL 464 Methods of Applied Toxicology (3)
BIOL 465 Applied Toxicology Project (3)
BIOL 466 Principles of Pharmacology (3)
BIOL 467 Industrial Hygiene (3)
CHEM 202 General Chemistry II (5)
CHEM 305 Analytical Chemistry (4)
CHEM 322 Organic Chemistry I (4)
CHEM 324 Organic Chemistry II (3)
CHEM 460 Biochemistry I (3)
CHEM 461 Biochemistry II (3)
CHEM 465 Biochemical Techniques I (1)
CHEM 466 Biochemical Techniques II (2)
HLTH 475 Biostatistics (3)

Required Minor: None

Major Emphasis: Zoology
Zoology is a major branch of the biological sciences that involves the study of animals. Study in this area focuses on organismal diversity, animal structures and the functions, genetics, development, evolution, behavior, and ecological interactions. Occupations that may be available to graduate include: Animal Husbandry, Museum/Zoo Guide, Animal Laboratory Technician, Animal Trainer, Pest Control Technician, Museum Curator, Entomologist, Environmental Consultant, Field Researcher, Science Writer, Physician, Veterinarian, Wildlife Rehabilitator, Zoo Keeper, and Zoologist. Advanced training in professional or graduate schools is required in many of these areas and acceptance for advanced training is competitive. Success in this career field typically requires: a thorough knowledge of general biology, the ability to work and relate with animals, proficiency in reading and writing and the ability to collect and analyze data, and an interest in problem solving and decision making. All emphases require BIOL 105, BIOL 106, BIOL 211, CHEM 201, and ENG 271W.

Emphasis Required General Education (choose 8 credits)
MATH 112 College Algebra (4)
MATH 113 Trigonometry (3)
MATH 115 Precalculus Mathematics (4)
PHYS 211 Principles of Physics I (4)

Emphasis Core Courses (choose 19 credits)
BIOL 215 General Ecology (4)
BIOL 301 Evolution (2)
BIOL 316 Animal Diversity (3)
BIOL 408 Vertebrate Ecology (4)
BIOL 424 Developmental Biology (3)
BIOL 431 Comparative Animal Physiology (3)

Emphasis Restricted Electives (choose 6-7 credits)
BIOL 420 Diagnostic Parasitology (3)
BIOL 421 Entomology (3)
BIOL 436 Animal Behavior (4)
BIOL 438 General Endocrinology (3)

Emphasis Unrestricted Electives (choose 6 credits)
Other courses may apply with advisor’s consent. A MAXIMUM of four credits may be used from BIOL 492, BIOL 497, and BIOL 499 combined.

Emphasis Required Support Courses
Chemistry (choose one)
CHEM 111 Chemistry of Life Processes (5)
CHEM 202 General Chemistry II (5)
Statistics (choose one)
HLTH 475 Biostatistics (3)
STAT 154 Elementary Statistics (3)

Recommended Support Courses
IT 100 Introduction to Computing and Applications (4)
MATH 121 Calculus I (4)

Required Minor: None

LIFE SCIENCE TEACHING BS
See the SCIENCE TEACHING section of this catalog.

BIOLOGY MINOR

Minor Core
BIOL 106 General Biology II (4)
BIOL 211 Genetics (4)
(choose 4 credits)
BIOL 105 General Biology I (4)
BIOL 105W General Biology I (4)

Minor Elective
In addition to the course chosen from the list below add any 200-level or above biology course to total 17 credits in the minor.
(choose one course from the following)
BIOL 215 General Ecology (4)
BIOL 217 Plant Science (4)
BIOL 220 Human Anatomy (4)
BIOL 270 Microbiology (4)

2015-2016 Undergraduate Catalog
COURSE DESCRIPTIONS

BIOL 100 (4) Our Natural World
Introductory course designed for students not majoring in science. Focuses on basic biological principles with special emphasis on the human species. Includes scientific problem solving, biodiversity, human and social aspects of biology, ecology, cellular processes and organ function, human reproduction, pre-natal development, and heredity. Lecture, laboratory, and small group discussions. Fall, Spring GE-3

BIOL 101 (2-4) Biological Perspectives
Students focus on specific biological perspectives, including environmental science, biology of women, biotechnology, human heredity, etc. May be repeated for credit under different sub-titles. Fall, Spring

BIOL 102 (3) Biology of Women
An introduction to biological topics of special interest to women with emphasis on anatomic and physiologic changes over the course of a woman’s lifetime. Designed for students not majoring in science. Presents fundamental biologic concepts within this specialized context and provides opportunity to collect, evaluate, and analyze data. Fall, Spring

BIOL 103W (3) Introduction to Biotechnology
An introductory course designed for students not majoring in science. Focuses on basic biological principles as applied to biotechnology. Includes basic natural science principles, scientific problem solving, and human and social aspects of biotechnology. Lecture, laboratory, and small group discussions. Fall

BIOL 105 (4) General Biology I
Study of biological processes at the suborganismal level including cell chemistry, metabolism, reproduction, genetics, and complex tissue physiology. Laboratory and discussion sessions stress problem solving and experimental design. Fall, Spring

BIOL 105W (4) General Biology I
Study of biological processes at the suborganismal level including cell chemistry, metabolism, reproduction, genetics, and complex tissue physiology. Laboratory and discussion sessions stress problem solving and experimental design. Fall, Spring

BIOL 106 (4) General Biology II
Study of biological processes at the organismal level including a survey of life forms (viruses, bacteria, protists, fungi, plants, and animals), their evolution, and ecology. Laboratory and discussion sessions stress problem solving and experimental design. Pre: BIOL 105 Fall, Spring

BIOL 175 (1) Orientation to Clinical Laboratory Science
An introduction to the health care profession with special emphasis on clinical laboratory personnel. Course includes presentations by professionals in some of the major health care fields, especially medical technology. Includes lectures, field observations. Spring

BIOL 211 (4) Genetics
Introduction to genetic analysis. Topics covered include those both classical and modern genetics: population genetics, molecular genetics, genetic manipulation of organisms and selection. Central to this course will be the primacy of the trait as the object of genetics and the development/refinement of the concept of the gene. Lab included. Pre: BIOL 105, BIOL 106, and MATH 112 Fall, Spring, Summer

BIOL 310 (4) Basics of Human Physiology
Principles of functions of human cells, organs, and systems with an emphasis on organ/system interactions. Designed for majors that do not require a strong medical and research emphasis. Includes an active learning laboratory to facilitate learning the complex lecture material. Pre: BIOL 220, CHEM 104 or CHEM 106 or CHEM 211 Fall, Spring, Summer

BIOL 316 (3) Animal Diversity
A comprehensive phylogenetic survey of both invertebrate and vertebrate animals. Emphasis on evolutionary relationships among phyla, the evolution of organism systems, animal organization and function, animal adaptations, and zoogeographical considerations. Research and inquiry of animal unity and diversity will include using the Internet. Lab included. Pre: BIOL 105 and BIOL 106 Fall

BIOL 320 (4) Cell Biology
An examination of eukaryotic cellular structure, organization and physiology. Lab included. Pre: BIOL 105 and BIOL 106, BIOL 211 Fall

BIOL 215 (4) General Ecology
Principles of the study of relationships between organisms and the environment. Topics include flow of energy and materials, organism-level interactions, growth and evolution of populations, and community ecology. Field trips to prairie, lake, stream, and forest communities, training in data collection and analysis, use of equipment, and report writing. Lab included. Pre: BIOL 105 and BIOL 106 or consent Fall

BIOL 217 (4) Plant Science
Biology of plants including unique features of plant cells, life histories, metabolism, anatomy, physiology, and ecology. The course emphasizes plants’ remarkable adaptations to their environments, their diversity, and the vital roles they play in ecological interactions. For biology and environmental science majors and minors. Lab included. Pre: BIOL 105 and BIOL 106 or consent Spring

BIOL 220 (4) Human Anatomy
Systems approach to the structure of the human body. The course is designed for students majoring in biology or health related programs. Lab included. Fall, Spring

BIOL 270 (4) Microbiology
An introduction to the general principles and methods used in the study of microorganisms. Lab included. Pre: One BIOL course and one semester of chemistry from among CHEM 104, CHEM 106, CHEM 111, or CHEM 201 Fall, Spring, Summer

BIOL 283 (1) MAX Scholar Seminar
This class provides MAX scholars with an opportunity to explore a set of topics related to achieving success in academic, professional and personal realms. Speakers will include faculty, graduate students, visiting researchers and industry members as well as student participants. NOTE: Credit does not apply to any major. Pre: Recipient of a MAX scholarship or instructor consent. Fall, Spring

BIOL 301 (2) Evolution
Evolution is a unifying theory of biology. Students are provided the history of evolutionary thought and the Darwinian revolution, evidence for evolution, mechanics of evolution, and an array of special topics such as speciation, molecular evolution, conservation, and extinction. Readings will include book chapters and journal articles. Lecture/discussion. Pre: BIOL 105, BIOL 106, BIOL 211 Spring

BIOL 310 (4) Basics of Human Physiology
Principles of functions of human cells, organs, and systems with an emphasis on organ/system interactions. Designed for majors that do not require a strong medical and research emphasis. Includes an active learning laboratory to facilitate learning the complex lecture material. Pre: BIOL 220, CHEM 104 or CHEM 106 or CHEM 111 or CHEM 201 Fall, Spring, Summer

BIOL 316 (3) Animal Diversity
A comprehensive phylogenetic survey of both invertebrate and vertebrate animals. Emphasis on evolutionary relationships among phyla, the evolution of organism systems, animal organization and function, animal adaptations, and zoogeographical considerations. Research and inquiry of animal unity and diversity will include using the Internet. Lab included. Pre: BIOL 105 and BIOL 106 Fall

BIOL 320 (4) Cell Biology
An examination of eukaryotic cellular structure, organization and physiology. Lab included. Pre: BIOL 105 and BIOL 106, BIOL 211 Fall
BIOL 324 (3) Neurobiology
Basic anatomy and physiology of the nervous system. The course is designed for students majoring in biology, psychology or health related programs.
Pre: BIOL 220
Fall

BIOL 330 (4) Principles of Human Physiology
Principles of functions of human cells, organs, and systems with an emphasis on organ/system interactions. This course is designed for students majoring in biology, chemistry, or related sciences, and medically-related areas. Includes a laboratory with a research and medical emphasis.
Pre: BIOL 220, CHEM 104 or CHEM 106 or CHEM 111 or CHEM 201
Fall, Spring, Summer

BIOL 380 (3) Blood Banking/Urinalysis
Basic understanding of the principles of immunohematology applied to the area of blood banking including major blood group systems, principles for antigen/antibody detection and identification, donor blood collection, transfusion evaluation, theory of renal function in health and disease, specimen collection, handling, and processing, and components of routine urinalysis.
Spring

BIOL 402 (4) Stream Ecology
The structure and function of stream ecosystems are presented with emphasis on adaptations of organisms to stream life and connections between stream organisms, the aquatic environment, and the surrounding watershed. Includes a laboratory with a research and medical emphasis.
Pre: BIOL 220, CHEM 104 or CHEM 106 or CHEM 111 or CHEM 201
Fall, Spring, Summer

BIOL 403 (3) Conservation Biology
Applications of principles from ecology, genetics, behavior, demography, economics, philosophy, and other fields to the conservation and sustainable use of natural populations of plants and animals. Lectures and discussions address topics such as habitat fragmentation, parks and reserves, genetic diversity, population viability, and extinction.
Pre: BIOL 215 or consent
Spring

BIOL 404 (4) Wetlands
To provide students the values and functions of wetlands and to use wetlands as an example of the relationship of ecology to management, and the impact that classification systems have politically. Lab (fieldwork) included.
Pre: BIOL 105, BIOL 106, BIOL 215 or consent
Summer

BIOL 405 (3) Fisheries Biology
An introduction to fish biology and fisheries management, diversity, form and function in the aquatic environment, functional physiology, evolution and speciation, identification and use of keys, ecology, and management topics.
Pre: BIOL 105, BIOL 106, BIOL 215, or consent
Spring

BIOL 408 (4) Vertebrate Ecology
A field course in the ecology of birds, mammals, amphibians, reptiles, and fishes. Students are trained in sampling techniques such as mark-and-recapture, population size estimation and monitoring, and species identification of live and preserved specimens. Lectures encompass evolution and adoption, origins, energetics, mating systems, morphology, geographical distributions, and population-level phenomena. Lecture and Laboratory.
Pre: BIOL 105, BIOL 106, BIOL 215 or consent
Fall

BIOL 409 (4) Advanced Field Ecology
A field course focused on the function and dynamics of various North American ecosystems. Emphases will be on natural history, critical thought, and experimental design. Students will be trained in a variety of soil, plant, and animal sampling techniques. Depending on enrollment, there may be additional costs (e.g., camping fees) for the course.
Pre: BIOL 105, BIOL 106, BIOL 215 or consent
Summer (On-Demand)

BIOL 410 (3) Global Change Biology
This class examines the effects of natural and human-induced changes in climate on terrestrial and marine ecosystems. The course focuses on the science behind global change issues that have biological, social, and economic implications.
Pre: BIOL 105, BIOL 106, BIOL 215 or consent
Fall

BIOL 412 (4) Soil Ecology
Soil ecology will focus on the genesis and classification of soils, the physical properties of soil as they relate to habitat formation, niches, interactions that exist among soil organisms, human impact on soil systems relative to population pressures and management practices. Lab included.
Pre: BIOL 105, BIOL 106, BIOL 215, or consent
Spring

BIOL 417 (3) Biology of Aging and Chronic Diseases
Emphasis is placed on the biomedical aspects of aging and chronic disease. The course is designed for students majoring in biology, gerontology programs, or other health related programs.
Pre: BIOL 100 or BIOL 105
Fall, Spring

BIOL 419 (2-3) Special Topics in Instrumentation
Instruction in specialized biological instrumentation.
Pre: BIOL 105 and BIOL 106
Fall

BIOL 420 (3) Diagnostic Parasitology
Clinically important parasites. Protozoans, Flukes, Tapeworms, Roundworms, Ticks, Mites and Insects. Designed for Medical Technology, Pre-Med, Pre-Vet and Biology majors. Identification, clinical disease, epidemiology and ecology are covered. Lab included.
Pre: BIOL 100 or BIOL 105, BIOL 106 recommended
Spring

BIOL 421 (3) Entomology
Morphological, physiological, medical, and economic significance of insects.
Pre: BIOL 105 and BIOL 106 or consent
ALT-Fall

BIOL 424 (3) Developmental Biology
Understanding the process of cell differentiation and development. These principles are then applied to the descriptive study of human embryology including the basis of congenital malformations.
Pre: BIOL 100 or BIOL 105
Fall

BIOL 425 (1) Development Biology Lab
Biological 425 is an optional 1-credit laboratory in addition to Developmental Biology, Biology 424. In the laboratory component, students will be exposed to modern techniques used to examine developmental processes in several key model systems. Laboratory exercises consist of experiments designed to demonstrate fundamental concepts in development and to familiarize students with experimental approaches utilized in studying developmental biology and embryology.
Fall
Pre: BIOL 211
Coreq: BIOL 424

BIOL 430 (4) Hematology/Introduction to Immunology
Collection, examination, evaluation, morphology, function and diseases of blood cells. Hemostasis/coagulation of blood. Immunology theory is presented. Lab included.
Spring

BIOL 431 (3) Comparative Animal Physiology
A comparison of adaptation mechanisms, from cell to organ-system, used by animals in response to “changes in” environmental conditions such as oxygen, carbon dioxide, food availability, temperature, water, solutes, pressure and buoyancy.
Pre: BIOL 105, BIOL 106 or consent
Fall
BIOLOGY CONTINUED

BIOL 423 (4) Lake Ecology
This course is an introduction to the physical, chemical, and biological characteristics and interactions of inland freshwater lakes. Labs will emphasize field work, including data collection from five local lakes, analysis, and discussion. (ALT-Fall)

BIOL 433 (3) Cardiovascular Physiology
This course is a functional study of the heart and circulatory system. (Fall)

BIOL 435 (4) Histology
Study of types, arrangements and special adaptations of human tissues. Lab included. Pre: BIOL 220 (Spring)

BIOL 436 (4) Animal Behavior
An exploration of behavioral strategy, communication, learning, and social systems of animals, with emphases placed on the causes, evolution, ecological implications, and function of behavior at the individual and population level. Lab included. Pre: BIOL 105, BIOL 106, BIOL 215 (Spring)

BIOL 438 (3) General Endocrinology
This course provides the basis for understanding hormones and the mechanisms of their actions in both the normal and pathological states. Sample topics to be included are diabetes, osteoporosis, hormones of reproduction and current social and medical issues related to the course. Pre: BIOL 100 or BIOL 105 (Spring)

BIOL 441 (4) Plant Physiology
Plant functions such as water relations, mineral nutrition, translocation, metabolism, photosynthesis, photosynthesis, fat and protein metabolisms, respiration, growth and development, phytohormones, reproduction and environmental physiology. Lab included. Pre: BIOL 105, BIOL 106, BIOL 217, one semester organic chemistry recommended. (Spring)

BIOL 442 (4) Flora of Minnesota
Field identification of plants with emphasis on local flora. History systematic, techniques, plant biogeography, methods of plant collection, preservation, preparation of herbarium specimens are covered. Lab and field trips included. Pre: BIOL 105, BIOL 106, BIOL 215 or consent. BIOL 217 strongly recommended. (Fall)

BIOL 443 (4) Plant Ecology
Expands upon general principles of ecology to focus on the factors that regulate the distribution and abundance of plants, analysis of plant populations, and dynamics of plant communities. Lecture and lab (fieldwork) included. Pre: BIOL 105, BIOL 106, BIOL 215 or consent. BIOL 217 strongly recommended. (Fall)

BIOL 451 (4) Plant Biotechnology
Lecture/laboratory course that presents an integrated view of plant biology, crop science, and current issues in biotechnology. Course focuses on issues of global concern such as sustainable food production, biofuels, genetically modified crops, molecular pharmsg, and tissue culture. Pre: BIOL 105, BIOL 106 (Fall)

BIOL 452 (3) Biological Instrumentation
The principle and operation of instruments and their application to biological research. Types of instrumentation examined include spectroscopic, chromatographic, electroanalytic, radiographic, and imaging. Laboratory Information Management systems (LIMS) will also be examined. Emphasis is placed on GLP, GMP, and ISO 9000 practices. Pre: BIOL 105, BIOL 106, or consent

BIOL 453 (4) Biological Engineering Analysis I
The application of engineering principles and skills as applied to fermentation and to biological product recovery. Pre: BIOL 270 and one semester each of calculus, physics, and organic chemistry, taken concurrently with BIOL 456. (Fall)

BIOL 454 (4) Biological Engineering Analysis II
Continuation of Biological Engineering Analysis I. The application of engineering principles and skills as applied to fermentation and to biological product recovery. Pre: BIOL 453, taken currently with BIOL 457 (Spring)

BIOL 456 (3) Biotechnology Project/Laboratory I
Practical laboratory experience in biotechnology through the selection and development of a research project. Students are expected to spend an average of 12 hours per week on the project. Pre: Concurrent enrollment in BIOL 453 (Fall)

BIOL 457 (3) Biotechnology Project/Laboratory II
Continuation of Biotechnology Project/Laboratory I. Practical laboratory experience in biotechnology through the selection and development of a research project. Students are expected to spend an average of 12 hours per week on the project. Pre: BIOL 456, taken concurrently with BIOL 454 (Spring)

BIOL 460 (3) Introduction to Toxicology
A lecture course covering basic principles of toxicity evaluation in living organisms, mechanisms of responses to chemicals or physical agents within an overview of practical medical, environmental and science policy implications. Presentation of comparisons of specific organ and tissue reactions to toxins in a variety of species follow these introductory concepts. Pre: BIOL 105, BIOL 106, and 1 year of General Chemistry (ALT-Fall)

BIOL 461 (4) Environmental Toxicology
A lecture/laboratory course that focuses on anthropogenic and natural toxicants, mathematical modeling of the dispersion of chemical and physical agents in the environment, effects on species and ecosystems with a special section on aquatic risk assessment. The laboratory includes techniques in environmental toxicity and a genuine research project. Pre: BIOL 460 (ALT-Spring)

BIOL 462 (1) Toxicology Seminar
A seminar course that involves critical evaluation of published studies in toxicology, student presentations of a selected published manuscript and requires students to write a paper on one aspect of the course’s topic area that semester. Topic areas vary each time the course is offered. Pre: BIOL 105, BIOL 106, and General Chemistry (ALT-Fall)

BIOL 461 (4) Environmental Toxicology
A lecture/laboratory course that focuses on anthropogenic and natural toxicants, mathematical modeling of the dispersion of chemical and physical agents in the environment, effects on species and ecosystems with a special section on aquatic risk assessment. The laboratory includes techniques in environmental toxicity and a genuine research project. Pre: BIOL 460 (ALT-Fall)

BIOL 462 (1) Toxicology Seminar
A seminar course that involves critical evaluation of published studies in toxicology, student presentations of a selected published manuscript and requires students to write a paper on one aspect of the course’s topic area that semester. Topic areas vary each time the course is offered. Pre: BIOL 105, BIOL 106, and General Chemistry (ALT-Fall)

BIOL 463 (3) Methods of Applied Toxicology
A lecture/laboratory course focusing on the steps necessary to start a research project from project definition through methods testing and evaluation, and a final report that includes a project flow chart. Third year students will have senior and/or graduate mentors. Pre: BIOL 105, BIOL 106, and General Chemistry (ALT-Fall)

BIOL 464 (3) Applied Toxicology Project
A lecture/laboratory course where students perform all aspects of their own designed research topic in toxicology while critically evaluating the progress of other projects as well. Students will be expected to keep timelines or develop modified timelines as necessary. The inverted triangle approach of project design will be examined and then included in all designs. Pre: BIOL 464 (ALT-S)

BIOL 466 (3) Principles of Pharmacology
A lecture course that examines mechanisms of drug action, physiological responses and adverse reactions from sensitivities or allergies through overdose. Pre: BIOL 105, BIOL 106, and 1 year of General Chemistry (ALT-Spring)
BIOL 467 (3) Industrial Hygiene
A lecture course that examines Minnesota State Mankato, as your own work place to develop reports on a selected group of chemical and physical hazards of the workplace. Evaluation methods and solutions to existing problems are developed with concise reporting skills.
Pre: BIOL 105, BIOL 106, and 1 year of General Chemistry
ALT-Fall

BIOL 472 (4) Microbial Ecology and Bioremediation
Role of microorganisms in soil, air, water, sewage processes as well as methods of measurement and detection. Special emphasis on the role of microorganisms in bioremediation. Lab included.
Pre: BIOL 105, BIOL 106, and BIOL 270
ALT-Spring

BIOL 474 (4) Immunology
Fundamental principles of humoral and cell mediated immunity and the application of these principles. Current experimental work in the different areas of immunology will be discussed. Lab included.
Pre: BIOL 105, BIOL 106, and BIOL 270
Fall

BIOL 475 (4) Medical Microbiology
This course will cover bacterial, fungal, and viral human pathogens: what diseases they cause, how they cause disease, and how humans defend against and prevent those diseases. In the laboratory the student will isolate and identify pathogenic microorganisms using microbiological, biochemical, and immunological techniques.
Pre: BIOL 270

BIOL 476 (5) Microbial Physiology and Genetics
This course presents the physiology and genetics of microorganisms emphasizing those aspects unique to bacteria and archea. Topics include: energy production; biosynthesis of small molecules and DNA, RNA, and proteins; the formation of cell walls and membranes; microbial differentiation and behavior; and the genetic and biochemical regulation of these processes. Lab included.
Pre: BIOL 105, BIOL 106, and BIOL 270
Spring

BIOL 477 (4) Food Microbiology and Sanitation
The role microbes play in production and spoilage of food products, as prepared for mass market. Topics include foodborne pathogens, epidemiology and control, essential principles in sanitation including Hazard Analysis/Critical Control Point and ISO 9000 requirements. Lab included.
Pre: BIOL 105, BIOL 106, and BIOL 270
Spring

BIOL 478 (4) Medical Microbiology
This course will cover bacterial, fungal, and viral human pathogens: what diseases they cause, how they cause disease, and how humans defend against and prevent those diseases. In the laboratory the student will isolate and identify pathogenic microorganisms using microbiological, biochemical, and immunological techniques.
Pre: BIOL 105, BIOL 106, and BIOL 270
Fall

BIOL 479 (4) Molecular Biology
This course will cover both eukaryotic and prokaryotic molecular biology including: DNA and RNA structure, transcription, regulation of gene expression, RNA processing, protein synthesis, DNA replication, mutagenesis and repair, recombination, and insertion elements. A number of important techniques used in recombinant DNA technology will be discussed and practiced.
Pre: BIOL 105, BIOL 106, and BIOL 270
Spring

BIOL 480 (3) Biological Laboratory Experiences for Elementary Teachers
Provides experience with a wide variety of biological laboratory exercises to prepare prospective elementary teachers. Emphasis is on building knowledge, skills, and confidence. The course will cover major biological concepts and environmental education through classroom-ready examples selected to illustrate each concept.
Fall, Spring

BIOL 481 (1) Lab Supervision and Maintenance
Experience in maintaining and supervising laboratories. For individuals desiring additional experience with students in laboratory situations.
Fall, Spring

BIOL 483 (1) MAX Scholar Seminar
This class provides MAX scholars with an opportunity to explore a set of topics related to achieving success in academic, professional and personal realms. Speakers will include faculty, graduate students, visiting researchers and industry members as well as student participants. Students will be required to participate in mentoring of lower division MAX scholarship recipients and provide written and oral presentations of various topics during the semester.
Pre: Recipient of a MAX scholarship or instructor consent.
Fall, Spring

BIOL 485 (4) Biology Teaching Methods and Materials
A basic science methods course designed to prepare prospective junior and senior high life science teachers. Course will cover science teaching methods and support materials as they apply to life science teaching situations.
Pre: 16 credits BIOL
Fall

BIOL 486 (3) Field-Based Teaching Methods and Materials
A lecture/laboratory course that provides opportunity for prospective junior and senior high life science teachers to observe, practice, and refine their teaching skills. Students will work in a school setting and experience actual classroom.
Pre: BIOL 485
ALT-Spring

BIOL 490 (1-4) Workshop
A variable topic course designed for a selected topic in Biology. Workshops provide an intensive learning experience on a new topic in the Biological Sciences and/or hands-on experiences in a current area not covered by other course offerings. The course involves background reading, demonstrations, and laboratory or field experiences.
Fall, Spring

BIOL 491 (1-4) In-Service
Fall, Spring

BIOL 492 (1-3) Honors Research
Fall, Spring

BIOL 493 (1-12) Cytotechnology Clinical Internship I
The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the area of cytotechnology. Instructor permission required.
Fall, Spring

BIOL 494 (1-12) Cytotechnology Clinical Internship II
Continuation of Cytotechnology Clinical Internship I. The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the area of cytotechnology. Instructor permission required.
Fall, Spring

BIOL 495 (1-12) Cytotechnology Clinical Internship III
Continuation of Cytotechnology Clinical Internship II. The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the area of cytotechnology. Instructor permission required.
Fall, Spring

BIOL 496 (1-12) Cytotechnology Clinical Internship IV
Continuation of Cytotechnology Clinical Internship III. The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the area of cytotechnology. Instructor permission required.
Fall, Spring

BIOL 497 (1-12) Internship I
Experience in applied biology according to a prearranged training program for a minimum of five 40-hour weeks.
Pre: Consent
Fall, Spring

BIOL 498 (1-12) Internship II
Experience in applied biology according to a prearranged training program for a minimum of five 40 hour weeks. Only four credits can be applied to the major.
Pre: Consent
Fall, Spring

BIOL 499 (1-4) Individual Study