MANUFACTURING ENGINEERING TECHNOLOGY

Manufacturing Engineering Technology
College of Science, Engineering & Technology
Department of Automotive & Manufacturing Engineering Technology
205 Trahant Science Center E
Phone: 507-389-6383
Fax: 507-389-5002
Website: www.cset.mnsu.edu/met

Chair: Dr. Bruce E. Jones, Ph.D.
Faculty: Kuldeep Agarwal, Ph.D., Craig Evers, Ph.D., P.E., Shaheen Ahmed, Ph.D., Gary Mead, Ph.D., Harry Petersen, Ph.D., P.E., Winston Sealy, Ph.D.

Accreditation. The Manufacturing Engineering Technology program is accredited by the Engineering Technology Accreditation Commission of the Accreditation Board for Engineering and Technology (ETAC-ABET), 415 N. Charles Street, Baltimore, MD 21201, 410.347.7700, www.abet.org

The mission of the Manufacturing Engineering Technology (MET) degree program at Minnesota State Mankato, is to provide a broad-based education to enable graduates to enter a variety of globally competitive manufacturing careers to serve the needs of the citizens of Minnesota, and the world by:

- providing the highest quality education to prepare application-oriented graduates for career opportunities in both traditional and computer-automated manufacturing environments;
- encouraging and supporting faculty, and students to engage in scholarly activities and research that support effective and ethical transfer of technology;
- providing access to state of the art equipment, facilities, and methodologies, along with faculty expertise to benefit MET students; and
- engaging in partnerships with area industry and other constituencies to broaden access to the program for traditional and diverse populations, while supporting K-12 pipeline development.

Program Description. Manufacturing Engineering Technology (MET) degree program awards a Bachelor of Science degree (BS) to successful students through a four-year curriculum.

“Engineering Technology” is the profession in which knowledge of the applied mathematical and natural sciences gained by higher education, practical experience, and competence developed in a specific field, is devoted to application of engineering principles and the implementation of technological advances for the benefit of humanity through its focus on product improvement, manufacturing, and automation of technological processes and operational functions. - Engineering Technology Council of the American Society of Engineering Education (ASEE).

“Modern manufacturing activities have become exceedingly complex because of rapidly increasing technology; and expanded environmental involvement. This, coupled with increasing social, political, and economic pressures, has increased the demand for highly skilled manufacturing technologists, engineers, and managers.” - Society of Manufacturing Engineers Fundamentals of Manufacturing 2005.

Students use major study areas of applied mathematics, engineering sciences and materials, product design, manufacturing processes, automated systems and controls, quality, manufacturing management and personal and professional effectiveness to perform in careers requiring the application of scientific and engineering knowledge and methods. Combined with technical skills in support of engineering activities; student careers often fit in the occupational spectrum between the craftsman and the engineer at the end of the spectrum closest to the engineer. Engineering technology is oriented less toward theory and more toward practical applications. (ASEE).

Manufacturing involves plans, materials, personnel, and equipment which are transformed in some way that adds value. Students acquire leadership and managerial skills necessary to enter careers in process and systems design, manufacturing operations, maintenance, technical sales or service functions. The curriculum concentrates on the study of individual subsystems and their overall optimization of cost, quality, speed, and flexibility goals for the success of a manufacturing enterprise. Students from the program are currently employed in a wide variety of industries including medical, electronics, power systems, defense, and automotive. A list of companies and industry sectors employing MET graduates may be obtained from the Department Chair.

The Society of Manufacturing Engineers (sme.org) is the lead professional society used in developing program criteria used for guiding program relevance and continuous improvement. Students are encouraged to take the Certified Manufacturing Technologist (CMTg) exam in their senior year and pursue other certifications as their experience broadens.

The primary goal of the MET program is to provide all graduates with the solid technical foundation necessary to insure their success in a wide variety of employment opportunities. To accomplish this goal, program outcomes and objectives are defined and assessed for continuous improvement. These are consistent with the mission of the university and college and reviewed by the Industrial Advisory Board on an annual basis. They are as follows:

Program Outcomes. Students at the time of graduation are prepared to:
1. apply knowledge, problem solving techniques, and hands-on skills in the assessment, design, application, and continuous improvement of manufacturing systems, including automated manufacturing, processes, process controls, manufacturing operations, management, and systems integration.
2. specify and implement hard and soft technologies to solve manufacturing system problems using creativity in design.
3. demonstrate the application of their knowledge of mathematics, statistics, science, engineering and technology.
4. conduct, analyze and interpret experiments and apply results to improve processes and systems.
5. recognize the need and develop the skills for lifelong learning.
6. communicate effectively across all design and management interface levels of an organization.
7. function effectively in a team and leadership environment.
8. implement accepted professional standards of integrity and ethical conduct.
9. understand and engage in behavior which respects diversity and global cultures.
10. practice timeliness and quality with regard to work requirements.

Program Objectives. Graduates two to three years into their careers should have the foundation to:
1. deliver products, services, and support to both internal and external organizations by applying technical knowledge, problem solving techniques and hands-on skills in traditional and emerging areas of manufacturing.
2. actively participate in ongoing professional development, professional growth and increasing professional responsibility.
3. effectively communicate ideas to technical and non-technical people.
4. perform, lead, and manage in cross-functional teams.
5. work within the accepted standards of professional integrity and conduct.
6. design, analyze, build, and test virtual or real models in product development and continuous improvement environments.
7. implement, and continuously improve cost, quality, time, and flexibility goals using world class management methodologies.

Academic Map/degree Plan at www.mnsu.edu/programs/#All

POLICIES/INFORMATION

Admission to the MET Major is granted by the Department of MET. Admission to the major is required to register for 300-level courses. Minimum requirements for acceptance into the MET major include a cumulative GPA of 2.0 or higher and the completion of the courses listed in the Prerequisites to the Major in the MET section of this bulletin with a grade of “C” (2.0) or higher.

GPA Policy. A GPA of 2.5 or higher in the required courses for the major or minor in Manufacturing Engineering Technology is required in order to proceed in the program sequence and graduate. This GPA calculation is based on the following areas: Required General Education, Prerequisite to the Major, Major Common Core and Major Restricted Electives. Refer to the College of Science Engineering and Technology Student Advising Center regarding required advising for students on academic probation.

Refer to the College regarding required advising for students on academic probation.

Department Grade Policy. All courses required for the MET major (Required General Education, Prerequisite to the Major, Major Common Core and Major Restricted Electives) must be completed with a grade of “C” (2.0) or better.

P/N Grading Policy. No more than 1/4 of all undergraduate credits may be P/N, except those courses offered P/N only.

Residency. A minimum of 50 percent of the credits for a major or minor in Manufacturing Engineering Technology must be taken at Minnesota State Mankato.
Prerequisites and corequisites must be observed unless written permission is obtained from the instructor and the Department of AMET. A flow chart of prerequisites is available in the Department Office and on AMET website.

The scheduling of all department courses is done biannually, based on enrollment and staffing. To obtain a current class schedule, contact the Department.

MANUFACTURING ENGINEERING TECHNOLOGY BS

Degree completion = 128 credits

Required General Education

- ECON 202 Principles of Microeconomics (3)
- ENG 271W Technical Communication (4)

Prerequisites to the Major

- CHEM 104 Introduction to Chemistry (3)
- ECT 113 DC Circuits (3)
- MATH 101 Composition (4)
- MATH 121 Calculus I (4)
- MET 104 Introduction to Manufacturing Engineering Technology (1)
- MET 142 Introduction to Parametric Modeling (3)
- MET 275 Manufacturing Processes I (4)
- PHYS 211 Principles of Physics I (4)
- STAT 154 Elementary Statistics (4)
- CMST (choose 3 credits)
- CMST 100 Fundamentals of Communication (3)
- CMST 102 Public Speaking (3)

Major Common Core

- AET 334 Fluid Power (3)
- MATH 122 Calculus II (4)
- MET 323 Statics (3)
- MET 324 Strength of Materials and Dynamics (4)
- MET 341 Advanced Parametric Modeling (3)
- MET 347 Manufacturing Automation (4)
- MET 375 Manufacturing Processes II (4)
- MET 386 Metrology for Engineering Technologist (3)
- MET 407 Manufacturing Resource Planning and Control (3)
- MET 423 Ergonomics & Work Measurement (3)
- MET 424 Industrial Safety (2)
- MET 425 Project and Value Management (3)
- MET 426 Logistics and Transportation (3)
- MET 427 Quality Management Systems (3)
- MET 428Lean Manufacturing (3)
- MET 448 Computer Integrated Manufacturing (3)
- MET 465 Lab Experience [2]
- MET 488W Senior Design Project I (2)
- MET 489W Senior Design Project II (2)
- PHYS 212 Principles of Physics II (4)

Minor Required: None.

MANUFACTURING ENGINEERING TECHNOLOGY MINOR

Required for Minor

- MET 104 Introduction to Manufacturing Engineering Technology (1)
- MET 142 Introduction to Parametric Modeling (3)
- MET 275 Manufacturing Processes I (4)

Electives

(choose 8 additional credits of MET courses)

COURSE DESCRIPTIONS

MET 104 (1) Introduction to Manufacturing Engineering Technology

An overview of careers, technology and requirements for individuals interested in Manufacturing Engineering Technology. Hands-on experience is gained in a variety of new technologies. Careers in engineering and technology are examined along with professional organizations and ethics. The course is intended as a first step toward a career in manufacturing. Fall

MET 142 (3) Introduction to Parametric Modeling

The course covers a process of developing and analyzing solid parametric models for mechanical applications. Course includes solving technical design problems based on real-world applications as well as creating technical documentation: working and assembly drawings. Fall, Spring

MET 275 (4) Manufacturing Processes I

Fundamentals of machine technology and metallurgy. Students learn to perform machining on a lathe, mill, and drill press, and also assemble the products. Basics of heat treatment, welding and machining are discussed. Extra lab time is required. Prerequisite: CHEM 104 and MET 142 Fall, Spring

MET 323 (3) Statics

This course covers principles of statics, force equilibrium, analysis of structures, friction, centroid, centers of gravity, and moment of inertia. Prerequisite: PHYS 211 and MATH 121 Fall, Spring

MET 324 (4) Strength of Materials and Dynamics

This course covers stress and strain, torsion, bending of beams, shearing stresses in beams, compound stresses, principal stresses, deflections of beams, columns, connections, and pressure vessels. Topics also include kinematics and kinetics of rigid bodies, work, energy, and power. Prerequisite: MET 323 Fall, Spring

MET 341 (3) Advanced Parametric Modeling

The course emphasizes the use of parametric modeling in design, analysis and manufacturing. Topics include component design, assembly, mechanism, animation, EFX and rapid prototyping using computer technology. Prerequisite: MET 142 Fall, Spring

MET 347 (4) Manufacturing Automation

CNC programming, computer-aided manufacturing (CAM), flexible automations, machining centers, robotics, programmable logic controllers, tooling systems. Extra lab time is required. Prerequisite: ECT 113, MET 275, MET 341 Spring

MET 375 (4) Manufacturing Processes II

Advanced manufacturing processes including casting, forging, sheet metal forming, and powder metals are discussed. Topics also include materials treatment, prepa-ration, and design for manufacture. Extra lab time is required. Prerequisite: MET 275 Fall, Spring

MET 386 (3) Metrology for Engineering Technologist

Quality and its continuous improvement is supported by metrology, statistical process control, and geometric dimensioning and tolerancing. This course presents these topics and their integration into operations. Prerequisite: MATH 121, MET 341, STAT 154. Admission to AET/MET major. Fall

MET 398 (0) CPT. Co-Operative Experience

Curricular Practical Training. Co-Operative Experience is a zero-credit full-time practical training experience for one summer and on adjacent fall or spring term. Special rules apply to preserve full-time student status. Please contact an advisor in your program for complete information. Prerequisite: MET 104. At least 60 credits earned, in good standing; instructor permission; co-op contract; other prerequisites may also apply. Fall, Spring, Summer

MET 407 (3) Manufacturing Resource Planning and Control

Strategic plant resource management for global manufacturing. Approaches examine and practice continuous improvements to the value stream related to design integration, production scheduling, staffing, facilities planning, and material flow. Fall
MET 423 (3) Ergonomics & Work Measurement
Investigates work design and automated and manual operations. Measurement, and development of design-based solutions for reduction of environmental stresses to the human body through worker-machine systems analysis are applied. Regulatory, legal, and ethical issues are reviewed in the context of global manufacturing applications.
Prerequisite: STAT 154
Spring

MET 424 (2) Industrial Safety
Techniques of developing safety practices in an industrial environment. Topics include OSHA, current legislation, cost analysis, personal protection, employee selection, psychological aspects, product safety, hazard materials and catastrophe control.
Fall, Spring

MET 425 (3) Project and Value Management
Planning, management, and economic justification of projects are supported by computer tools for scheduling, staffing, and economic analysis.
Prerequisite: STAT 154
Fall, Spring

MET 426 (3) Logistics and Transportation
Fundamentals of logistics and supply chain management: control of materials, WIP, finished goods, costs of logistics. Theory and step-by-step procedures are used to analyze logistic systems, material handling, packaging, and transportation, including global logistics.
Fall

MET 427 (3) Quality Management Systems
This course is focused on quality assurance systems, management philosophies, methodology, function and impact of quality systems in manufacturing operations. Development and application of statistical process control tools.
Prerequisite: STAT 154
Fall

MET 428 (3) Lean Manufacturing
Basics of Lean Manufacturing in industry, with emphasis on application of concepts. Students will learn the principles of Lean Manufacturing and how they can benefit a business.
Prerequisite: MET 427 or similar quality control course
Spring

MET 448 (3) Computer Integrated Manufacturing
This course covers the following topics: manufacturing systems integration techniques, Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), Computer-Aided Process Planning (CAPP), Direct Numerical Control (DNC), Flexible Machining Systems (FMS), Automated Storage and Retrieval Systems (ASRS), Automated Guided Vehicles (AGV) and Robotics.
Prerequisite: MET 347, PHYS 212
Fall

MET 465 (2) Lab Experience
This course provides experience in management, organization, supervision, and maintenance in a laboratory environment. Enrollment is limited.
Prerequisite: MET 375
Fall, Spring

MET 488W (2) Senior Design Project I
An examination of manufacturing design and research. Students refine their design proposal and begin their senior design projects. This course also prepares the student for MET 489W, Senior Design Project II, where the design proposal, design project, and final report are completed. This course should be taken in the fall semester of the senior year.
Prerequisite: ENG 271W, MET 275, MET 425, 10 AET or MET 300/400 level credits

MET 489W (2) Senior Design Project II
Completion of the capstone design project; a continuation of MET 488W.
Spring
Prerequisite: MET 488W, Permission Required

MET 492 (1-4) Seminar: Manufacturing
Selected manufacturing topics.