Biotechnology
Undergraduate Programs
Description
Biotechnology is the application of recent developments in technology to manipulate the genetic and biochemical characteristics of an organism so that the organism or its metabolites can be economically produced for our benefit. In practice it requires the selection and genetic improvement of an organism for a specific purpose. Organisms may be used to synthesize a desirable product or degrade unwanted materials. The industrialization of this technology is dependent on the development of methods for scaling up processes developed in the laboratory.
Students interested in biotechnology could find careers in a wide variety of industrial applications. Examples of industries that use biotechnology are antibiotic and pharmaceutical; food; energy; agricultural pesticides; herbicides; fertilizers; growth chemicals and breeding programs; industrial chemicals, biocatalysts and diagnostics.
The biotechnologist works with research scientists on the development of processes in the laboratory and with engineers to transfer and scale up laboratory processes for large scale production required by industry. Because of the interdisciplinary nature of biotechnology, biotechnologists must have a strong background in the analytical and quantitative areas of science. In addition, the biotechnologist must be familiar with the theory and practice of genetic engineering and biochemical processes.
Majors |
Program | Locations | Total Credits |
---|---|---|---|
Biotechnology BS | BS - Bachelor of Science |
|
120 |
Policies & Faculty
Policies
Admission to Major is granted by the department. Admission requirements are 32 earned semester credit hours including BIOL 105 and BIOL 106, with a grade of a “C” or better in both BIOL 105 and BIOL 106; and a minimum cumulative GPA of 2.0.
Contact Information
242 Trafton Science Center S
507-389-5731
www.cset.mnsu.edu/biology/
Faculty
Director
- Gregg Marg, PhD
Faculty
100 Level
Credits: 4
Introductory course designed for students not majoring in science. Focuses on basic biological principles with special emphasis on the human species. Includes scientific problem solving, biodiversity, human and social aspects of biology, ecology, cellular processes and organ function, human reproduction, pre-natal development, and heredity. Lecture, laboratory, and small group discussions.Prerequisites: none
Goal Areas: GE-03, GE-08
Credits: 2-4
Students focus on specific biological perspectives, including environmental science, biology of women, biotechnology, human heredity, etc. May be repeated for credit under different sub-titles.
Prerequisites: none
Credits: 3
An introduction to biological topics of special interest to women with emphasis on anatomic and physiologic changes over the course of a woman's lifetime. Designed for students not majoring in science. Presents fundamental biologic concepts within this specialized context and provides opportunity to collect, evaluate, and analyze data.Prerequisites: none
Goal Areas: GE-03
Credits: 3
An introductory course designed for students not majoring in science. Focuses on basic biological principles as applied to biotechnology. Includes basic natural science principles, scientific problem solving, and human and social aspects of biotechnology. Lecture, laboratory, and small group discussions.Prerequisites: none
Goal Areas: GE-03
Credits: 4
Study of biological processes at the suborganismal level including cell chemistry, metabolism, reproduction, genetics, and complex tissue physiology. Laboratory and discussion sessions stress problem solving and experimental design.Prerequisites: none
Goal Areas: GE-03
Credits: 4
Study of biological processes at the suborganismal level including cell chemistry, metabolism, reproduction, genetics, and complex tissue physiology. Laboratory and discussion sessions stress problem solving and experimental design.Prerequisites: none
Goal Areas: GE-03
Credits: 4
Study of biological processes at the organismal level including a survey of life forms (viruses, bacteria, protists, fungi, plants, and animals), their evolution, and ecology. Laboratory and discussion sessions stress problem solving and experimental design.Prerequisites: BIOL 105
Credits: 1
An introduction to the health care profession with special emphasis on clinical laboratory personnel. Course includes presentations by professionals in some of the major health care fields, especially medical technology. Includes lectures, field observations.Prerequisites: none
200 Level
Credits: 4
Introduction to genetic analysis. Topics covered will include those of both classical and modern genetics: population genetics, molecular genetics, genetic manipulation of organisms and selection. Central to this course will be the primacy of the trait as the object of genetics and the development/refinement of the concept of the gene. Lab included.Fall, Spring, SummerPrerequisites: BIOL 105, BIOL 106, and MATH 112
Credits: 4
Principles of the study of relationships between organisms and the environment. Topics include flow of energy and materials, organism-level interactions, growth and evolution of populations, and community ecology. Field trips to prairie, lake, stream, and forest communities, training in data collection and analysis, use of equipment, and report writing. Lab included.Prerequisites: BIOL 105 and BIOL 106 or consent
Credits: 4
Biology of plants including unique features of plant cells, life histories, metabolism, anatomy, physiology, and ecology. The course empathizes plants' remarkable adaptations to their environments, their diversity, and the vital roles they play in ecological interactions. For biology and environmental science majors and minors. Lab included.Prerequisites: BIOL 105 and BIOL 106 or consent
Credits: 4
Systems approach to the structure of the human body. The course is designed for students majoring in biology or health related programs. Lab included.Prerequisites: none
Credits: 4
An introduction to the general principles and methods used in the study of microorganisms. Lab included. Prereq: One BIOL course and one semester of chemistry from among CHEM 104, CHEM 106, CHEM 111, or CHEM 201. Fall, Spring, SummerPrerequisites: One BIOL course and one semester of chemistry from among CHEM 104, CHEM 106, CHEM 111, or CHEM 201
Goal Areas: GE-03
Credits: 3
Provides experience with a wide variety of biological laboratory exercises to prepare prospective elementary teachers. Emphasis is on building knowledge, skills, and confidence. The course will cover major biological concepts and environmental education through classroom-ready examples selected to illustrate each concept.Prerequisites: none
Credits: 1
This class provides MAX scholars with an opportunity to explore a set of topics related to achieving success in academic, professional and personal realms. Speakers will include faculty, graduate students, visiting researchers and industry members as well as student participants. NOTE: Credit does not apply to any major.Fall, SpringPrereq: Recipient of a MAX scholarship or instructor consentPrerequisites: Recipient of a MAX scholarship or instructor consent.
300 Level
Credits: 2
Evolution is a unifying theory of biology. Students are provided the history of evolutionary thought and the Darwinian revolution, evidence for evolution, mechanics of evolution, and an array of special topics such as speciation, molecular evolution, conservation, and extinction. Readings will include book chapters and journal articles. Lecture/discussion.Prerequisites: BIOL 105, BIOL 106, BIOL 211
Credits: 4
Principles of functions of human cells, organs, and systems with an emphasis on organ/system interactions. Designed for majors that do not require a strong medical and research emphasis. Includes an active learning laboratory to facilitate learning the complex lecture material.Prerequisites: BIOL 220, CHEM 104 or CHEM 106 or CHEM 111 or CHEM 201
Credits: 3
A comprehensive phylogenetic survey of both invertebrate and vertebrate animals. Emphasis on evolutionary relationships among phyla, the evolution of organ systems, animal organization and function, animal adaptations, and zoogeographical considerations. Research and inquiry of animal unity and diversity will include using the Internet. Lab included.Prerequisites: BIOL 105 and BIOL 106
Credits: 4
An examination of eukaryotic cellular structure, organization and physiology. Lab included.Prerequisites: BIOL 105 and BIOL 106, BIOL 211
Credits: 3
Basic anatomy and physiology of the nervous system. The course is designed for students majoring in biology, psychology or health related programs.Prerequisites: BIOL 220
Credits: 4
Principles of functions of human cells, organs, and systems with an emphasis on organ/system interactions. This course is designed for students majoring in biology, chemistry, or related sciences, and medically-related areas. Includes a laboratory with a research and medical emphasis.Prerequisites: BIOL 220, CHEM 104 or CHEM 106 or CHEM 111 or CHEM 201
Credits: 3
Basic understanding of the principles of immunohematology applied to the area of blood blanking including major blood group systems, principles for antigen/antibody detection and identification, donor blood collection, transfusion evaluation, theory of renal function in health and disease, specimen collection, handling, and processing, and components of routine urinalysis.Prerequisites: none
Credits: 1
This course is designed to provide hands-on research experience to RISEbio scholars. Students taking this course will be involved in an original research project. Using a variety of methods, students will collect original data and contribute to problem solving in the biological sciences. As an early research experience, emphasis will be placed on the process of scientific research, including formulation of a research plan, data collection, assessment of data quality and interpretation based on available data. Students are required to keep a lab notebook and present their findings to classmates and a wider audience.Prerequisites: none
400 Level
Credits: 4
The structure and function of stream ecosystems are presented with emphasis on adaptations of organisms to stream life and connections between stream organisms, the aquatic environment, and the surrounding watershed. Includes lab, field work, and team projects. Prereq: BIOL 105W, BIOL 106, BIOL 215 or consentSummerPrerequisites: BIOL 105, BIOL 106, BIOL 215 or consent
Credits: 3
Applications of principles from ecology, genetics, behavior, demography, economics, philosophy, and other fields to the conservation and sustainable use of natural populations of plants and animals. Lectures and discussions address topics such as habitat fragmentation, parks and reserves, genetic diversity, population viability, and extinction.Prerequisites: BIOL 215 or consent
Credits: 4
To provide students the values and functions of wetlands and to use wetlands as an example of the relationship of ecology to management, and the impact that classification systems have politically. Lab (fieldwork) included.Prerequisites: BIOL 105, BIOL 106, BIOL 215, or consent
Credits: 3
An introduction to fish biology and fisheries management, diversity, form, and function in the aquatic environment, functional physiology, evolution and speciation, identification and use of keys, ecology, and management topics.Prerequisites: BIOL 105, BIOL 106, BIOL 215, or consent of instructor
Credits: 4
A field course in the ecology of birds, mammals, amphibians, reptiles, and fishes. Students are trained in sampling techniques such as mark-and-recapture, population size estimation and monitoring, and species identification of live and preserved specimens. Lectures encompass evolution and adoption, origins, energetics, mating systems, morphology, geographical distributions, and population-level phenomena. Lecture and Laboratory.Prerequisites: BIOL 105, BIOL 106, BIOL 215 or consent
Credits: 4
A field course focused on the function and dynamics of various North American ecosystems. Emphases will be on natural history, critical thought, and experimental design. Students will be trained in a variety of soil, plant, and animal sampling techniques. Depending on enrollment, there may be additional costs (e.g., camping fees) for the course.Prerequisites: BIOL 105, BIOL 106, BIOL 215 or consent
Credits: 3
This class examines the effects of natural and human-induced changes in climate on terrestrial and marine ecosystems. The course focuses on the science behind global change issues that have biological, social, and economic implicatons.Prerequisites: BIOL 105, BIOL 106, BIOL 215 or consent
Credits: 3
This course will examine multiple facets of human genetics. The modern human genome is not a static entity but one that arose from a dynamic combination of inputs from multiple human species, effects from the environment, and their mixture over time. The first third of the course will study ancient human genetics and their contributions to our genome, the second will study human ancestry and migration patterns, and human population genetics. The final third of the course will investigate the modern human genome, genetic diseases, genetic engineering of our genome, and the future of human genetics and its ethical implications.Prerequisites: none
Credits: 4
Soil ecology will focus on the genesis and classification of soils, the physical properties of soil as they relate to habitat formation, niches, interactions that exist among soil organisms, human impact on soil systems relative to population pressures and management practices. Lab included.Prerequisites: BIOL 105, BIOL 106, BIOL 215, or consent
Credits: 3
Emphasis is placed on the biomedical aspects of aging and chronic disease. The course is designed for students majoring in biology, gerontology programs, or other health related programs.Prerequisites: BIOL 100 or BIOL 105
Credits: 4
Clinically important parasites. Protozoans, Flukes, Tapeworms, Roundworms, Ticks, Mites and Insects. Designed for Medical Technology, Pre-Med, Pre-Vet and Biology majors. Identification, clinical disease, epidemiology and ecology are covered. Lab included.Prerequisites: BIOL 100 or BIOL 105, BIOL 106 recommended
Credits: 3
Morphological, physiological, medical, and economic significance of insects.Prerequisites: BIOL 105 and BIOL 106 or consent
Credits: 3
Understanding the process of cell differentiation and development. Special emphasis will be placed on the genetic, molecular, and cellular mechanisms that direct the development of multicellular organisms. Course to include current areas of research and other timely topics.Prerequisites: BIOL 100 or BIOL 105
Credits: 1
Biology 425 is an optional 1-credit laboratory addition to Developmental Biology, Biology 424. In the laboratory component, students will be exposed to modern techniques used to examine developmental processes in several key model systems. Laboratory exercises consist of experiments designed to demonstrate fundamental concepts in development and to familiarize students with experimental approaches utilized in studying developmental biology and embryology.Prerequisites: BIOL 211; Co-requisite: BIOL 424
Credits: 4
Collection, examination, evaluation, morphology, function and diseases of blood cells. Hemostasis/coagulation of blood. Immunology theory is presented. Lab included.Prerequisites: none
Credits: 3
A comparison of adaptation mechanisms, from cell to organ-system, used by animals in response to changes in environmental conditions such as oxygen, carbon dioxide, food availability, temperature, water, solutes, pressure and buoyancy.Prerequisites: BIOL 105, BIOL 106 or consent
Credits: 4
This course is an introduction to the physical, chemical, and biological characteristics and interactions of inland freshwater lakes. Labs will emphasize field work, including data collection from five local lakes, analysis, and discussion.Prerequisites: none
Credits: 3
This course is a functional study of the heart and circulatory system.Prerequisites: none
Credits: 4
Study of types, arrangements and special adaptations of human tissues. Lab included.Prerequisites: BIOL 220
Credits: 4
An exploration of behavioral strategy, communication, learning, and social systems of animals, with emphases placed on the causes, evolution, ecological implications, and function of behavior at the individual and population level. Lab included.Prerequisites: BIOL 105, BIOL 106, BIOL 215
Credits: 3
This course provides the basis for understanding hormones and the mechanisms of their actions in both the normal and pathological states. Sample topics to be included are diabetes, osteoporosis, hormones of reproduction and current social and medical issues related to the course.Prerequisites: BIOL 100 or BIOL 105
Credits: 4
Plant functions such as water relations, mineral nutrition, translocation, metabolisms, photosynthesis, photorespiration, fat and protein metabolism, respiration, growth and development, phytohormones, reproduction and environmental physiology. Lab included. (One semester organic chemistry is recommended.)Prerequisites: BIOL 105, BIOL 106, BIOL 217, one semester organic chemistry recommended.
Credits: 4
Field identification of plants with emphasis on local flora. History systematic, techniques, plant biogeography, methods of plant collection, preservation, preparation of herbarium specimens are covered. Lab and field trips included.Prerequisites: none
Credits: 4
Expands upon general principles of ecology to focus on the factors that regulate the distribution and abundance of plants, analysis of plant populations, and dynamics of plant communities. Lecture and lab (fieldwork) included. (Taking BIOL 217 is strongly recommended before taking this class.)Prerequisites: BIOL 105, BIOL 106, BIOL 215 or consent. BIOL 217 strongly recommended.
Credits: 4
Lecture/laboratory course that presents an integrated view of plant biology, crop science, ecology, sustainability and current issues in biotechnology. Course focuses on issues of global concern such as sustainable food production, cropping techniques, climate change responses, pest management and herbicides, resistance, biofuels, genetically modified crops, molecular pharming, and tissue culture. Fall.Prerequisites: BIOL 105, BIOL 106
Credits: 3
The principle and operation of instruments and their application to biological research. Types of instrumentation examined include spectroscopic, chromatographic, electroanalytic, radiographic, and imaging. Laboratory Information Management systems (LIMS) will also be examined. Emphasis is placed on GLP, GMP, and ISO 9000 practices.Prerequisites: BIOL 105, BIOL 106, or consent
Credits: 4
The application of engineering principles and skills as applied to fermentation and to biological product recovery. Prereq: BIOL 270 and one semester each of calculus, physics, and organic chemistry, taken concurrently with BIOL 456.Prerequisites: BIOL 270 and one semester each of calculus, physics, and organic chemistry, taken concurrently with BIOL 456.
Credits: 4
Continuation of Biological Engineering Analysis I. The application of engineering principles and skills as applied to fermentation and to biological product recovery. Prereq: BIOL 453, taken concurrently with BIOL 457.Prerequisites: BIOL 453, taken currently with BIOL 457
Credits: 3
Practical laboratory experience in biotechnology through the selection and development of a research project. Students are expected to spend an average of 12 hours per week on the project. Prereq: Concurrent enrollment in BIOL 453Prerequisites: Concurrent enrollment in BIOL 453
Credits: 3
Continuation of Biotechnology Project/Laboratory I. Practical laboratory experience in biotechnology through the selection and development of a research project. Students are expected to spend an average of 12 hours per week on the project. Prereq: BIOL 456, taken concurrently with BIOL 454Prerequisites: BIOL 456, taken concurrently with BIOL 454
Credits: 3
A lecture course covering basic principles of toxicity evaluation in living organisms, mechanisms of responses to chemicals or physical agents within an overview of practical medical, environmental and science policy implications. Presentation of comparisons of specific organ and tissue reactions to toxins in a variety of species follow these introductory concepts. Prereq: BIOL 105W, 106, and 1 year of General ChemistryPrerequisites: BIOL 105, BIOL 106, and 1 year of General Chemistry
Credits: 4
A lecture/laboratory course that focuses on anthropogenic and natural toxicants, mathematical modeling of the dispersion of chemical and physical agents in the environment, effects on species and ecosystems with a special section on aquatic risk assessment. The laboratory includes techniques in environmental toxicity and a genuine research project.Prerequisites: BIOL 460
Credits: 1
A seminar course that involves critical evaluation of published studies in toxicology, student presentations of a selected published manuscript and requires students to write a paper on one aspect of the course's topic area that semeter. Topic areas vary each time the course is offered. Prereq: BIOL 105W, 106, and General Chemistry Alt-FallPrerequisites: BIOL 105, BIOL 106, and General Chemistry
Credits: 3
A lecture/laboratory course focusing on the steps necessary to start a research project from project definition through methods testing and evaluation, and a final report that includes a project flow chart. Third year students will have senior and/or graduate mentors. Prereq: BIOL 105W, 106, and General Chemistry Alt-FallPrerequisites: BIOL 105, BIOL 106, and General Chemistry
Credits: 3
A lecture/laboratory course where students perform all aspects of their own designed research topic in toxicology while critically evaluating the progress of other projects as well. Students will be expected to keep timelines or develop modified timelines as necessary. The inverted triangle approach of project design will be examined and then included in all designs.Prerequisites: BIOL 464
Credits: 3
A lecture course that examines mechanisms of drug action, physiological responses and adverse reactions from sensitivities or allergies through overdose. Prereq: BIOL 105W, 106, 230 and 1 year of General ChemistryPrerequisites: BIOL 105, BIOL 106, and 1 year of General Chemistry
Credits: 3
A lecture course that examines Minnesota State University, Mankato, as your own work place to develop reports on a selected group of chemical and physical hazards of the workplace. Evaluation methods and solutions to existing problems are developed with concise reporting skills. Prereq: BIOL 105W, 106 and 1 year of General ChemistryPrerequisites: BIOL 105, BIOL 106, and 1 year of General Chemistry
Credits: 4
Role of microorganisms in soil, air, water, sewage processes as well as methods of measurement and detection. Special emphasis on the role of microorganisms in bioremediation. Lab included.Prerequisites: BIOL 105, BIOL 106, and BIOL 270
Credits: 3
Viruses infect all living things, such as bacteria, fungi, plants, and animals (including humans). There are many viruses that cause significant human mortality and morbidity, such as influenza and smallpox viruses. However, the vast majority of viruses that infect humans have little or no negative impact on our health and well-being. This course will teach Virology by stressing the rules of replication that every virus must follow. The use of viruses as molecular tools, virus-host interactions, and current viral outbreaks will also be discussed.Prerequisites: BIOL 105, BIOL 106, and BIOL 270
Credits: 4
Fundamental principles of humoral and cell mediated immunity and the application of these principles. Current experimental work in the different areas of immunology will be discussed. Lab included.Prerequisites: BIOL 105, BIOL 106, and BIOL 270
Credits: 4
This course will cover bacterial, fungal, and viral human pathogens: what diseases they cause, how they cause disease, and how humans defend against and prevent those diseases. In the laboratory the student will isolate and identify pathogenic microorganisms using microbiological, biochemical, and immunological techniques.Prerequisites: BIOL 270
Credits: 5
This course presents the physiology and genetics of microorganisms emphasizing those aspects unique to bacteria and archea. Topics include: energy production; biosynthesis of small molecules and DNA, RNA, and proteins; the formation of cell walls and membranes; microbial differentiation and behavior; and the genetic and biochemical regulation of these processes. Lab included.Prerequisites: BIOL 105, BIOL 106, BIOL 270
Credits: 4
The role microbes play in production and spoilage of food products, as prepared for mass market. Topics include foodborn pathogens, epidemiology and control, essential principles in sanitation including Hazard Analysis/Critical Control Point and ISO 9000 requirements. Lab included.Prerequisites: BIOL 105, BIOL 106 and BIOL 270
Credits: 4
This course will cover both eukaryotic and prokaryotic molecular biology including: DNA and RNA structure, transcription, regulation of gene expression, RNA processing, protein synthesis, DNA replication, mutagenesis and repair, recombination, and insertion elements. A number of important techniques used in recombinant DNA technology will be discussed and practiced.Prerequisites: BIOL 105, BIOL 106, BIOL 211
Credits: 3
Provides experience with a wide variety of biological laboratory exercises to prepare prospective elementary teachers. Emphasis is on building knowledge, skills, and confidence. The course will cover major biological concepts and environmental education through classroom-ready examples selected to illustrate each concept.Prerequisites: none
Credits: 1
Experience in maintaining and supervising laboratories. For individuals desiring additional experience with students in laboratory situations.Prerequisites: none
Credits: 1
This class provides MAX scholars with an opporutnity to explore a set of topics related to achieving success in academic, professional and personal realms. Speakers will include faculty, graduate students, visiting researchers and industry members as well as student participants. Students will be required to participate in mentoring of lower division MAX scholarship recipients and provide written and oral presentations of various topics during the semester.Fall, SpringPrereq: Receipient of a MAX scholarship or instructor consentPrerequisites: Recipient of a MAX scholarship or instructor consent.
Credits: 4
A basic science methods course designed to prepare prospective junior and senior high life science teachers. Course will cover science teaching methods and support materials as they apply to life science teaching situations. Prereq: 16 credits BIOLPrerequisites: 16 credits BIOL
Credits: 3
A lecture/laboratory course that provides opportunity for prospective junior and senior high life science teachers to observe, practice, and refine their teaching skills. Students will work in a school setting and experience actual classroom.Prerequisites: BIOL 485
Credits: 17
The clinical internship and training include lectures, demonstrations, laboratory sessions, and clinical practicum in the area of nuclear medicine technology in affiliation with Mayo School of Health Sciences in Rochester, MN.Prerequisites: none
Credits: 17
The clinical internship and training include lectures, demonstrations, laboratory sessions, and clinical practicum in the area of nuclear medicine technology in affiliation with Mayo School of Health Sciences in Rochester, MN.Prerequisites: none
Credits: 1-4
A variable topic course designed for a selected topic in Biology. Workshops provide an intensive learning experience on a new topic in the Biological Sciences and/ or hands-on experiences in a current area not covered by other course offerings. The course involves background reading, demonstrations, and laboratory or field experiences.Prerequisites: none
Credits: 1-3
.Prerequisites: none
Credits: 1-12
The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the area of cytotechnology. Instructor permission required.Prerequisites: none
Credits: 1-12
Continuation of Cytotechnology Clinical Internship I. The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the area of cytotechnology. Instructor Permission required.Prerequisites: none
Credits: 1-12
Continuation of Cytotechnology Clinical Internship II. The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the area of cytotechnology. Instructor Permission required.Prerequisites: none
Credits: 1-12
Continuation of Cytotechnology Clinical Internship III. The clinical internship and training includes lectures, demonstrations, laboratory sessions, and clinical practicum in the area of cytotechnology. Instructor Permission required.Prerequisites: none
Credits: 1-12
Experience in applied biology according to a prearranged training program for a minimum of five 40-hour weeks.Prerequisites: Consent
Credits: 1-12
Experience in applied biology according to a prearranged training program for a minimum of five 40 hour weeks. Only four credits can be applied to the major.Prerequisites: Consent
Credits: 1-4
Individual StudyPrerequisites: none